cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309694 Sum of the even parts appearing among the largest parts of the partitions of n into 3 parts.

This page as a plain text file.
%I A309694 #14 Sep 01 2019 11:25:19
%S A309694 0,0,0,0,2,2,6,4,14,14,28,24,48,44,74,68,112,106,158,144,214,206,286,
%T A309694 268,370,352,466,444,584,562,716,680,864,838,1038,996,1230,1188,1440,
%U A309694 1392,1682,1634,1944,1876,2228,2174,2548,2472,2892,2816,3260,3176,3670
%N A309694 Sum of the even parts appearing among the largest parts of the partitions of n into 3 parts.
%H A309694 Colin Barker, <a href="/A309694/b309694.txt">Table of n, a(n) for n = 0..1000</a>
%H A309694 <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%H A309694 <a href="/index/Rec#order_19">Index entries for linear recurrences with constant coefficients</a>, signature (1,-1,1,1,-1,3,-3,2,-2,-2,2,-3,3,-1,1,1,-1,1,-1).
%F A309694 a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} (n-i-j) * ((n-i-j-1) mod 2).
%F A309694 From _Colin Barker_, Aug 23 2019: (Start)
%F A309694 G.f.: 2*x^4*(1 + 3*x^2 - x^3 + 6*x^4 - x^5 + 7*x^6 - x^7 + 6*x^8 - x^9 + 3*x^10 - x^11 + x^12) / ((1 - x)^4*(1 + x)^3*(1 - x + x^2)^2*(1 + x^2)^2*(1 + x + x^2)^2).
%F A309694 a(n) = a(n-1) - a(n-2) + a(n-3) + a(n-4) - a(n-5) + 3*a(n-6) - 3*a(n-7) + 2*a(n-8) - 2*a(n-9) - 2*a(n-10) + 2*a(n-11) - 3*a(n-12) + 3*a(n-13) - a(n-14) + a(n-15) + a(n-16) - a(n-17) + a(n-18) - a(n-19) for n>18.
%F A309694 (End)
%e A309694 Figure 1: The partitions of n into 3 parts for n = 3, 4, ...
%e A309694                                                           1+1+8
%e A309694                                                    1+1+7  1+2+7
%e A309694                                                    1+2+6  1+3+6
%e A309694                                             1+1+6  1+3+5  1+4+5
%e A309694                                      1+1+5  1+2+5  1+4+4  2+2+6
%e A309694                               1+1+4  1+2+4  1+3+4  2+2+5  2+3+5
%e A309694                        1+1+3  1+2+3  1+3+3  2+2+4  2+3+4  2+4+4
%e A309694          1+1+1  1+1+2  1+2+2  2+2+2  2+2+3  2+3+3  3+3+3  3+3+4    ...
%e A309694 -----------------------------------------------------------------------
%e A309694   n  |     3      4      5      6      7      8      9     10      ...
%e A309694 -----------------------------------------------------------------------
%e A309694 a(n) |     0      2      2      6      4     14     14     28      ...
%e A309694 -----------------------------------------------------------------------
%t A309694 Table[Sum[Sum[(n - i - j) * Mod[n - i - j - 1, 2], {i, j, Floor[(n - j)/2]}], {j, Floor[n/3]}], {n, 0, 80}]
%t A309694 LinearRecurrence[{1, -1, 1, 1, -1, 3, -3, 2, -2, -2, 2, -3, 3, -1, 1, 1, -1, 1, -1}, {0, 0, 0, 0, 2, 2, 6, 4, 14, 14, 28, 24, 48, 44, 74, 68, 112, 106, 158}, 80]
%o A309694 (PARI) concat([0,0,0,0], Vec(2*x^4*(1 + 3*x^2 - x^3 + 6*x^4 - x^5 + 7*x^6 - x^7 + 6*x^8 - x^9 + 3*x^10 - x^11 + x^12) / ((1 - x)^4*(1 + x)^3*(1 - x + x^2)^2*(1 + x^2)^2*(1 + x + x^2)^2) + O(x^40))) \\ _Colin Barker_, Aug 23 2019
%Y A309694 Cf. A026923, A026927, A309683, A309684, A309685, A309686, A309687, A309688, A309689, A309690, A309692.
%K A309694 nonn,easy
%O A309694 0,5
%A A309694 _Wesley Ivan Hurt_, Aug 12 2019