This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309696 #20 Sep 08 2022 08:46:21 %S A309696 1,39,42,78,155,156,266,310,465,546,620,793,798,930,1092,1586,1596, %T A309696 1638,1860,2170,2184,2379,2394,3172,3276,3720,3965,4340,4758,4788, %U A309696 4914,5219,6045,6344,6510,6552,7137,7182,7930,8680,9516,9828,10374,10438,11102,11895,12090,13020,14274,14364,15657,15860,16843,16891,18135 %N A309696 Numbers m such that the numerator of Sum_{k=1..m, gcd(k,m) = 1} 1/k^2 is divisible by m^2. %C A309696 Probably A290815 is a subset of these numbers. How to prove it? %C A309696 Conjecture: odd terms of this sequence are odd terms of A290815. %C A309696 Problem: are there numbers m > 1 such that the numerator of Sum_{k=1..m, gcd(k,m)=1} 1/k^2 is divisible by m^3 ? %t A309696 aQ[n_] := Divisible[Numerator[Plus @@ ((1/Select[Range[n], CoprimeQ[n, #] &])^2)], n^2]; Select[Range[10^4], aQ] %o A309696 (PARI) isok(m) = !(numerator(sum(k=1, m, if (gcd(k,m) == 1, 1/k^2))) % m^2); \\ _Michel Marcus_, Aug 13 2019 %o A309696 (Magma) v:= [Numerator(&+[1/k^2:k in [1..n]|Gcd(k,n) eq 1]):n in [1..10000]]; [m:m in [1..#v]| v[m] mod m^2 eq 0]; // _Marius A. Burtea_, Aug 14 2019 %Y A309696 Cf. A290815. %K A309696 nonn %O A309696 1,2 %A A309696 _Amiram Eldar_ and _Thomas Ordowski_, Aug 13 2019