This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309699 #22 Aug 14 2019 08:31:52 %S A309699 5,4,0,3,1,5,0,0,3,3,2,1,3,0,0,3,4,3,1,1,1,1,1,4,3,4,0,5,3,1,1,5,3,3, %T A309699 0,2,2,2,5,3,5,5,2,5,2,2,2,3,4,2,0,5,4,3,3,2,0,0,4,1,1,5,5,5,0,0,1,4, %U A309699 3,5,4,5,1,5,5,0,5,4,0,4,4,4,4,3,4,4,0,4,3,4,0,5,4,4 %N A309699 Digits of the 6-adic integer 5^(1/5). %C A309699 x = ...513045, %C A309699 x^2 = ...433521, %C A309699 x^3 = ...051525, %C A309699 x^4 = ...354241, %C A309699 x^5 = ...000005. %H A309699 Seiichi Manyama, <a href="/A309699/b309699.txt">Table of n, a(n) for n = 0..10000</a> %H A309699 Wikipedia, <a href="https://en.wikipedia.org/wiki/Hensel%27s_lemma">Hensel's Lemma</a>. %F A309699 Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 5, b(n) = b(n-1) + b(n-1)^5 - 5 mod 6^n for n > 1, then a(n) = (b(n+1) - b(n))/6^n. %o A309699 (PARI) N=100; Vecrev(digits(lift(chinese(Mod((5+O(2^N))^(1/5), 2^N), Mod((5+O(3^N))^(1/5), 3^N))), 6), N) %o A309699 (Ruby) %o A309699 def A309699(n) %o A309699 ary = [5] %o A309699 a = 5 %o A309699 n.times{|i| %o A309699 b = (a + a ** 5 - 5) % (6 ** (i + 2)) %o A309699 ary << (b - a) / (6 ** (i + 1)) %o A309699 a = b %o A309699 } %o A309699 ary %o A309699 end %o A309699 p A309699(100) %Y A309699 Digits of the k-adic integer (k-1)^(1/(k-1)): A309698 (k=4), this sequence (k=6), A309700 (k=8), A225458 (k=10). %Y A309699 Cf. A309448. %K A309699 nonn,base %O A309699 0,1 %A A309699 _Seiichi Manyama_, Aug 13 2019