This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309700 #20 Aug 14 2019 08:32:03 %S A309700 7,6,1,0,1,6,4,1,7,3,6,4,4,5,3,3,4,2,0,0,6,2,5,4,2,6,6,3,2,2,6,1,0,3, %T A309700 5,6,1,6,6,7,0,6,6,7,7,5,3,2,2,7,5,5,1,7,5,7,1,1,1,2,5,0,4,3,2,5,3,0, %U A309700 3,3,1,7,3,4,5,4,5,1,1,2,2,7,0,6,7,1,4,4,6,7,6,2,2,5 %N A309700 Digits of the 8-adic integer 7^(1/7). %H A309700 Seiichi Manyama, <a href="/A309700/b309700.txt">Table of n, a(n) for n = 0..10000</a> %H A309700 Wikipedia, <a href="https://en.wikipedia.org/wiki/Hensel%27s_lemma">Hensel's Lemma</a>. %F A309700 Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 7, b(n) = b(n-1) + b(n-1)^7 - 7 mod 8^n for n > 1, then a(n) = (b(n+1) - b(n))/8^n. %o A309700 (PARI) N=100; Vecrev(digits(lift((7+O(2^(3*N)))^(1/7)), 8), N) %o A309700 (Ruby) %o A309700 def A309700(n) %o A309700 ary = [7] %o A309700 a = 7 %o A309700 n.times{|i| %o A309700 b = (a + a ** 7 - 7) % (8 ** (i + 2)) %o A309700 ary << (b - a) / (8 ** (i + 1)) %o A309700 a = b %o A309700 } %o A309700 ary %o A309700 end %o A309700 p A309700(100) %Y A309700 Digits of the k-adic integer (k-1)^(1/(k-1)): A309698 (k=4), A309699 (k=6), this sequence (k=8), A225458 (k=10). %Y A309700 Cf. A225445. %K A309700 nonn,base %O A309700 0,1 %A A309700 _Seiichi Manyama_, Aug 13 2019