A309710 Decimal expansion of Sum_{k>=1} Kronecker(-8,k)/k^2.
1, 0, 6, 4, 7, 3, 4, 1, 7, 1, 0, 4, 3, 5, 0, 3, 3, 7, 0, 3, 9, 2, 8, 2, 7, 4, 5, 1, 4, 6, 1, 6, 6, 8, 8, 8, 9, 4, 8, 3, 0, 9, 9, 1, 5, 1, 7, 7, 4, 4, 8, 5, 1, 2, 4, 4, 1, 9, 8, 7, 4, 5, 0, 8, 0, 6, 3, 9, 9, 0, 1, 7, 1, 7, 5, 8, 6, 4, 3, 7, 6, 3, 6, 6, 6, 5, 3, 4, 2, 5, 0
Offset: 1
Examples
1 + 1/3^2 - 1/5^2 - 1/7^2 + 1/9^2 + 1/11^2 - 1/13^2 - 1/15^2 + ...= 1.0647341710...
Links
- Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 98.
- R. J. Mathar, Table of Dirichlet L-series and prime zeta modulo functions for small moduli, Section 2.2 L(m=8, r=4, s=2).
- Eric Weisstein's World of Mathematics, Dirichlet L-Series.
- Eric Weisstein's World of Mathematics, Polygamma Function.
Crossrefs
Programs
-
Mathematica
(PolyGamma[1, 1/8] + PolyGamma[1, 3/8] - PolyGamma[1, 5/8] - PolyGamma[1, 7/8])/64 // RealDigits[#, 10, 102] & // First
Formula
Equals (zeta(2,1/8) + zeta(2,3/8) - zeta(2,5/8) - zeta(2,7/8))/64, where zeta(s,a) is the Hurwitz zeta function.
Equals (polylog(2,u) + polylog(2,u^3) - polylog(2,-u) - polylog(2,-u^3))/sqrt(-8), where u = sqrt(2)/2 + i*sqrt(2)/2 is an 8th primitive root of unity, i = sqrt(-1).
Equals (polygamma(1,1/8) + polygamma(1,3/8) - polygamma(1,5/8) - polygamma(1,7/8))/64.
Equals 1/(Product_{p prime == 1 or 3 (mod 8)} (1 - 1/p^2) * Product_{p prime == 5 or 7 (mod 8)} (1 + 1/p^2)). - Amiram Eldar, Dec 17 2023
Comments