This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309729 #11 Aug 14 2019 22:19:05 %S A309729 1,2,4,7,12,26,44,92,175,354,684,1396,2732,5506,10938,21937,43692, %T A309729 87578,174764,349884,699098,1398786,2796204,5593886,11184823,22372354, %U A309729 44739418,89483996,178956972,357925242,715827884,1431677702,2863312218,5726666754,11453246178,22906581193 %N A309729 Expansion of Sum_{k>=1} x^k/(1 - x^k - 2*x^(2*k)). %C A309729 Inverse Moebius transform of Jacobsthal numbers (A001045). %F A309729 G.f.: Sum_{k>=1} A001045(k) * x^k/(1 - x^k). %F A309729 a(n) = (1/3) * Sum_{d|n} (2^d - (-1)^d). %p A309729 seq(add(2^d-(-1)^d, d=numtheory:-divisors(n))/3, n=1..50); # _Robert Israel_, Aug 14 2019 %t A309729 nmax = 36; CoefficientList[Series[Sum[x^k/(1 - x^k - 2 x^(2 k)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest %t A309729 Table[(1/3) Sum[(2^d - (-1)^d), {d, Divisors[n]}], {n, 1, 36}] %o A309729 (PARI) a(n)={sumdiv(n, d, 2^d - (-1)^d)/3} \\ _Andrew Howroyd_, Aug 14 2019 %o A309729 (Python) %o A309729 n = 1 %o A309729 while n <= 36: %o A309729 s, d = 0, 1 %o A309729 while d <= n: %o A309729 if n%d == 0: %o A309729 s = s+2**d-(-1)**d %o A309729 d = d+1 %o A309729 print(n,s//3) %o A309729 n = n+1 # _A.H.M. Smeets_, Aug 14 2019 %Y A309729 Cf. A001045, A007435, A055895, A100107, A104723, A256281. %K A309729 nonn %O A309729 1,2 %A A309729 _Ilya Gutkovskiy_, Aug 14 2019