This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309736 #14 Feb 16 2025 08:33:55 %S A309736 1,1,2,1,1,2,3,1,1,1,1,2,2,3,5,1,1,1,1,1,1,1,1,2,2,2,2,3,3,5,10,1,1,1, %T A309736 1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,4,5,6,10,19,1,1,1,1, %U A309736 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 %N A309736 a(1) = 1, and for any n > 1, a(n) is the least k > 0 such that the binary representation of n^k starts with "10". %C A309736 The sequence is well defined; for any n > 0: %C A309736 - if n is a power of 2, then a(n) = 1, %C A309736 - if n is not a power of 2, then log_2(n) is irrational, %C A309736 hence the function k -> frac(k * log_2(n)) is dense in the interval [0, 1] %C A309736 according to Weyl's criterion, %C A309736 so for some k > 0, k*log_2(n) = m + 1 + e where m is a positive integer %C A309736 and 0 <= e < log_2(3) - 1 < 1, %C A309736 - hence 2 * 2^m <= n^k < 3 * 2^m and a(n) <= k, QED. %H A309736 Rémy Sigrist, <a href="/A309736/a309736.png">Scatterplot of (x, y) such that the binary representation of x^y starts with "10" and x = 2..1024 and y = 1..1024</a> %H A309736 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/WeylsCriterion.html">Weyl's Criterion</a> %F A309736 a(n) = 1 iff n belongs to A004754. %F A309736 a(2*n) = a(n). %F A309736 A090996(n^a(n)) = 1. %e A309736 For n = 7: %e A309736 - the first powers of 7, in decimal as well as in binary, are: %e A309736 k 7^k bin(7^k) %e A309736 - --- --------- %e A309736 1 7 111 %e A309736 2 49 110001 %e A309736 3 343 101010111 %e A309736 - hence a(7) = 3. %o A309736 (PARI) a(n) = { my (nk=n); for (k=1, oo, if (binary(2*nk)[2]==0, return (k), nk *= n)) } %Y A309736 Cf. A004754, A090996, A098174. %K A309736 nonn,base %O A309736 1,3 %A A309736 _Rémy Sigrist_, Aug 14 2019