cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309739 Primes of the form b*10^(2*k) + b*10^k + 1 for 1 <= b <= 9, k >= 0.

This page as a plain text file.
%I A309739 #22 Aug 15 2019 07:28:59
%S A309739 3,5,7,11,13,17,19,331,661,881,991,20201,60601,90901,2002001,5005001,
%T A309739 300030001,600060001,50000500001,2000002000001,8000008000001,
%U A309739 9000009000001,3000000003000000001,200000000020000000001,80000000000800000000001
%N A309739 Primes of the form b*10^(2*k) + b*10^k + 1 for 1 <= b <= 9, k >= 0.
%e A309739 b | Primes of the form b*10^(2*k) + b*10^k + 1
%e A309739 --+-------------------------------------------------------------
%e A309739 1 | 3.
%e A309739 2 | 5, 20201, 2002001, 2000002000001, 200000000020000000001, ...
%e A309739 3 | 7, 331, 300030001, 3000000003000000001.
%e A309739 4 |
%e A309739 5 | 11, 5005001, 50000500001, ...
%e A309739 6 | 13, 661, 60601, 600060001, ...
%e A309739 7 |
%e A309739 8 | 17, 881, 8000008000001, 80000000000800000000001, ...
%e A309739 9 | 19, 991, 90901, 9000009000001, 9000000000009000000000001, ...
%Y A309739 Numbers k such that b*10^(2*k) + b*10^k + 1 are prime: A296444 (b=2), A309740 (b=5), A309741 (b=6), A309742 (b=8), A309743 (b=9).
%Y A309739 Primes of the form b*10^(2*k) + b*10^k + 1: A160432 (b=3).
%Y A309739 Cf. A309738.
%K A309739 nonn,base
%O A309739 1,1
%A A309739 _Seiichi Manyama_, Aug 15 2019