This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309775 #60 Jul 06 2020 14:54:08 %S A309775 1,-1,-1,3,7,-13,-89,-45,1191,4723,-6873,-143597,-499289,1843891, %T A309775 28132391,104223059,-508838745,-8597456141,-39770287321,158845792147, %U A309775 3788893515687,23979078221619,-38626203043289,-2200108609291821,-19878849864738137,-27269435066568845 %N A309775 Expansion of e.g.f. exp(2 * (1 - exp(x)) + x). %F A309775 a(0) = 1 and a(n) = a(n-1) - 2 * Sum_{k=0..n-1} binomial(n-1,k) * a(k) for n > 0. %F A309775 a(n) = exp(2) * Sum_{k>=0} (k + 1)^n * (-2)^k / k!. %F A309775 a(n) = Sum_{k=0..n} binomial(n,k) * Bell(k, -2). - _Vaclav Kotesovec_, Jul 06 2020 %t A309775 m = 25; Range[0, m]! * CoefficientList[Series[Exp[2 * (1 - Exp[x]) + x], {x, 0, m}], x] (* _Amiram Eldar_, Jul 06 2020 *) %t A309775 Table[Sum[Binomial[n, k] * BellB[k, -2], {k, 0, n}], {n, 0, 30}] (* _Vaclav Kotesovec_, Jul 06 2020 *) %o A309775 (PARI) N=40; x='x+O('x^N); Vec(serlaplace(exp(2*(1-exp(x))+x))) %Y A309775 Column k=2 of A335977. %Y A309775 Cf. A335980. %K A309775 sign %O A309775 0,4 %A A309775 _Seiichi Manyama_, Jul 06 2020