A309778 a(n) is the greatest integer such that, for every positive integer k <= a(n), n^2 can be written as the sum of k positive square integers.
1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 155, 1, 211, 1, 275, 1, 1, 2, 1, 1, 1, 1, 611, 662, 1, 1, 827, 886, 1, 1, 1, 1142, 1211, 1, 1355, 1, 1507, 2, 1667, 1, 1, 1, 2011, 1, 1, 1, 1, 2486, 2587, 2690, 2795, 1, 3011, 1, 1, 3350, 1, 3586, 3707, 1, 1, 1
Offset: 1
Keywords
Examples
1 = 1^2, 4 = 2^2 and a(1) = a(2) = 1. 25 = 5^2 = 3^2 + 4^2 and a(5) = 2. The first representations of 169 are 13^2 = 12^2 + 5^2 = 12^2 + 4^2 + 3^2 = 11^2 + 4^2 + 4^2 + 4^2 = 6^2 + 6^2 + 6^2 + 6^2 + 5^2 = 6^2 + 6^2 + 6^2 + 6^2 + 4^2 + 3^2 = ... and a(13) = 13^2 - 14 = 155.
References
- Marcin E. Kuczma, International Mathematical Olympiads, 1986-1999, The Mathematical Association of America, 2003, pages 76-79.
Links
- IMO, 1992, Moscow, Second day. Problem 6
Comments