This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309779 #53 Oct 29 2023 15:25:08 %S A309779 25,100,400,1600,6400,25600,102400,409600,1638400,6553600,26214400, %T A309779 104857600,419430400,1677721600,6710886400,26843545600,107374182400, %U A309779 429496729600,1717986918400,6871947673600,27487790694400,109951162777600,439804651110400,1759218604441600 %N A309779 Squares that can be expressed as the sum of two positive squares but not as the sum of three positive squares. %C A309779 This sequence comes from the study of A309778, exactly, A309778(n) = 2 iff n^2 belongs to this sequence here. %C A309779 According to Draxl link, a(n) is a term of this sequence iff a(n) = 5^2 * 4^(n-1) with n >= 1. %C A309779 This sequence is a subsequence of A219222 whose terms are all of the form b_0 * 4^k with b_0 in A051952, hence, the only primitive term of this sequence here is 25. %H A309779 H.-P. Baltes, Peter K. J. Draxl, and Eberhard R. Hilf, <a href="http://smallsystems.isn-oldenburg.de/publications/metadocs/ebs.quadratsummen.html">Quadratsummen und gewisse Randwertprobleme der Mathematischen Physik</a>, Publications of the Small Systems Group Oldenburg, preprint, 1973. %H A309779 H.-P. Baltes, Peter K. J. Draxl, and Eberhard R. Hilf, <a href="https://doi.org/10.1515/crll.1974.268-269.410">Quadratsummen und gewisse Randwertprobleme der Mathematischen Physik</a>, Journ. Reine Angewandte Mathematik, Vol. 268/269, 1974, 410-417. %H A309779 P. K. J. Draxl, <a href="http://www.numdam.org/item?id=MSMF_1974__37__53_0">Sommes de deux carrés qui ne sont pas sommes de trois carrés.</a>, Mémoires de la SMF, tome 37 (1974), p. 53-53. %H A309779 <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (4). %F A309779 a(n) = 5^2 * 4^(n-1) with n >= 1. %F A309779 a(n) = 4*a(n-1) for n > 1. G.f.: 25*x/(1 - 4*x). - _Chai Wah Wu_, Aug 29 2019 %F A309779 a(n) = 25 * A000302(n-1). - _Alois P. Heinz_, Aug 29 2019 %F A309779 E.g.f.: 25*(exp(4*x) - 1)/4. - _Stefano Spezia_, Oct 28 2023 %e A309779 25 = 5^2 = 3^2 + 4^2, %e A309779 100 = 10^2 = 6^2 + 8^2, %e A309779 5^2 * 4^(n-1) = (5 * 2^(n-1))^2 = (3 * 2^(n-1))^2 + (4 * 2^(n-1))^2, but these terms are not the sum of three positive squares. %t A309779 Array[25*4^(# - 1) &, 24] (* _Michael De Vlieger_, Aug 19 2019 *) %o A309779 (PARI) a(n) = 25 * 4^(n-1); \\ _Jinyuan Wang_, Aug 18 2019 %Y A309779 Intersection of A000290 and A219222. %Y A309779 Cf. A000302, A000378, A000408, A051952, A134422, A309778. %K A309779 nonn,easy %O A309779 1,1 %A A309779 _Bernard Schott_, Aug 17 2019