cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309779 Squares that can be expressed as the sum of two positive squares but not as the sum of three positive squares.

This page as a plain text file.
%I A309779 #53 Oct 29 2023 15:25:08
%S A309779 25,100,400,1600,6400,25600,102400,409600,1638400,6553600,26214400,
%T A309779 104857600,419430400,1677721600,6710886400,26843545600,107374182400,
%U A309779 429496729600,1717986918400,6871947673600,27487790694400,109951162777600,439804651110400,1759218604441600
%N A309779 Squares that can be expressed as the sum of two positive squares but not as the sum of three positive squares.
%C A309779 This sequence comes from the study of A309778, exactly, A309778(n) = 2 iff n^2 belongs to this sequence here.
%C A309779 According to Draxl link, a(n) is a term of this sequence iff a(n) = 5^2 * 4^(n-1) with n >= 1.
%C A309779 This sequence is a subsequence of A219222 whose terms are all of the form b_0 * 4^k with b_0 in A051952, hence, the only primitive term of this sequence here is 25.
%H A309779 H.-P. Baltes, Peter K. J. Draxl, and Eberhard R. Hilf, <a href="http://smallsystems.isn-oldenburg.de/publications/metadocs/ebs.quadratsummen.html">Quadratsummen und gewisse Randwertprobleme der Mathematischen Physik</a>, Publications of the Small Systems Group Oldenburg, preprint, 1973.
%H A309779 H.-P. Baltes, Peter K. J. Draxl, and Eberhard R. Hilf, <a href="https://doi.org/10.1515/crll.1974.268-269.410">Quadratsummen und gewisse Randwertprobleme der Mathematischen Physik</a>, Journ. Reine Angewandte Mathematik, Vol. 268/269, 1974, 410-417.
%H A309779 P. K. J. Draxl, <a href="http://www.numdam.org/item?id=MSMF_1974__37__53_0">Sommes de deux carrés qui ne sont pas sommes de trois carrés.</a>, Mémoires de la SMF, tome 37 (1974), p. 53-53.
%H A309779 <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (4).
%F A309779 a(n) = 5^2 * 4^(n-1) with n >= 1.
%F A309779 a(n) = 4*a(n-1) for n > 1. G.f.: 25*x/(1 - 4*x). - _Chai Wah Wu_, Aug 29 2019
%F A309779 a(n) = 25 * A000302(n-1). - _Alois P. Heinz_, Aug 29 2019
%F A309779 E.g.f.: 25*(exp(4*x) - 1)/4. - _Stefano Spezia_, Oct 28 2023
%e A309779 25 = 5^2 = 3^2 + 4^2,
%e A309779 100 = 10^2 = 6^2 + 8^2,
%e A309779 5^2 * 4^(n-1) = (5 * 2^(n-1))^2 = (3 * 2^(n-1))^2 + (4 * 2^(n-1))^2, but these terms are not the sum of three positive squares.
%t A309779 Array[25*4^(# - 1) &, 24] (* _Michael De Vlieger_, Aug 19 2019 *)
%o A309779 (PARI) a(n) = 25 * 4^(n-1); \\ _Jinyuan Wang_, Aug 18 2019
%Y A309779 Intersection of A000290 and A219222.
%Y A309779 Cf. A000302, A000378, A000408, A051952, A134422, A309778.
%K A309779 nonn,easy
%O A309779 1,1
%A A309779 _Bernard Schott_, Aug 17 2019