cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309787 Palindromes whose product of digits are palindromes with at least two digits.

This page as a plain text file.
%I A309787 #63 Sep 08 2022 08:46:22
%S A309787 676,777,16761,17771,23732,32723,61716,71717,1167611,1177711,1237321,
%T A309787 1327231,1617161,1717171,2137312,2317132,3127213,3217123,6117116,
%U A309787 7117117,111676111,111777111,112373211,113272311,116171611,117171711,121373121,123171321
%N A309787 Palindromes whose product of digits are palindromes with at least two digits.
%C A309787 For n < 40 every term relates to 676 or 777.
%H A309787 Chai Wah Wu, <a href="/A309787/b309787.txt">Table of n, a(n) for n = 1..10912</a>
%e A309787 For 676: 6*7*6 = 252.
%e A309787 For 1717171: 1*7*1*7*1*7*1 = 343.
%p A309787 ispali:= proc(n) option remember; local L,i;
%p A309787 L:= convert(n,base,10);
%p A309787 andmap(i -> L[i]=L[-i], [$1..floor(nops(L)/2)])
%p A309787 end proc:
%p A309787 P[1]:= [$1..9]:
%p A309787 P[2]:= [seq(11*i,i=1..9)]:
%p A309787 for d from 3 to 13 do
%p A309787   P[d]:= [seq(seq((10^(d-1)+1)*i+10*x, x=P[d-2]),i=1..9)]
%p A309787 od:
%p A309787 filter:= proc(n) local p; p:= convert(convert(n,base,10),`*`);
%p A309787   p >= 11 and ispali(p)
%p A309787 end proc:
%p A309787 map(op,[seq(select(filter, P[d]),d=1..13)]); # _Robert Israel_, Nov 14 2019
%t A309787 pd[n_] := Times @@ IntegerDigits[n]; aQ[n_] := PalindromeQ[n] && (p = pd[n]) > 9 && PalindromeQ[p]; Select[Range[10^7], aQ] (* _Amiram Eldar_, Nov 12 2019 *)
%o A309787 (Magma) f:=func<n|Intseq(n) eq Reverse(Intseq(n))>; g:=func<m| #Intseq(&*Intseq(m)) ge 2>; [k:k in [1..10000000]| f(k) and f(&*Intseq(k)) and g(k)]; // _Marius A. Burtea_, Nov 12 2019
%Y A309787 Cf. A002113, A117055
%K A309787 nonn,base
%O A309787 1,1
%A A309787 _Maxim Veselov_, Nov 11 2019
%E A309787 Corrected by _Robert Israel_, Nov 14 2019