cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309793 Number of odd parts appearing among the second largest parts of the partitions of n into 4 parts.

This page as a plain text file.
%I A309793 #24 Nov 07 2019 07:02:01
%S A309793 0,0,0,0,1,1,1,1,2,3,5,6,8,9,11,13,17,20,24,27,32,36,42,47,54,60,68,
%T A309793 75,85,93,103,112,124,135,149,161,176,189,205,220,239,256,276,294,316,
%U A309793 336,360,382,408,432,460,486,517,545,577,607,642,675,713,748
%N A309793 Number of odd parts appearing among the second largest parts of the partitions of n into 4 parts.
%H A309793 Colin Barker, <a href="/A309793/b309793.txt">Table of n, a(n) for n = 0..1000</a>
%H A309793 <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%H A309793 <a href="/index/Rec#order_16">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,0,0,0,1,-2,2,-2,1,0,0,0,-1,2,-1).
%F A309793 a(n) = Sum_{k=1..floor(n/4)} Sum_{j=k..floor((n-k)/3)} Sum_{i=j..floor((n-j-k)/2)} (i mod 2).
%F A309793 From _Colin Barker_, Aug 18 2019: (Start)
%F A309793 G.f.: x^4*(1 - x + x^4) / ((1 - x)^4*(1 + x)^2*(1 - x + x^2)*(1 + x^2)*(1 + x + x^2)*(1 + x^4)).
%F A309793 a(n) = 2*a(n-1) - a(n-2) + a(n-6) - 2*a(n-7) + 2*a(n-8) - 2*a(n-9) + a(n-10) - a(n-14) + 2*a(n-15) - a(n-16) for n>15.
%F A309793 (End) [Recurrence verified by _Wesley Ivan Hurt_, Aug 24 2019]
%e A309793 Figure 1: The partitions of n into 4 parts for n = 8, 9, ..
%e A309793                                                          1+1+1+9
%e A309793                                                          1+1+2+8
%e A309793                                                          1+1+3+7
%e A309793                                                          1+1+4+6
%e A309793                                              1+1+1+8     1+1+5+5
%e A309793                                              1+1+2+7     1+2+2+7
%e A309793                                  1+1+1+7     1+1+3+6     1+2+3+6
%e A309793                                  1+1+2+6     1+1+4+5     1+2+4+5
%e A309793                                  1+1+3+5     1+2+2+6     1+3+3+5
%e A309793                      1+1+1+6     1+1+4+4     1+2+3+5     1+3+4+4
%e A309793          1+1+1+5     1+1+2+5     1+2+2+5     1+2+4+4     2+2+2+6
%e A309793          1+1+2+4     1+1+3+4     1+2+3+4     1+3+3+4     2+2+3+5
%e A309793          1+1+3+3     1+2+2+4     1+3+3+3     2+2+2+5     2+2+4+4
%e A309793          1+2+2+3     1+2+3+3     2+2+2+4     2+2+3+4     2+3+3+4
%e A309793          2+2+2+2     2+2+2+3     2+2+3+3     2+3+3+3     3+3+3+3
%e A309793 --------------------------------------------------------------------------
%e A309793   n  |      8           9          10          11          12        ...
%e A309793 --------------------------------------------------------------------------
%e A309793 a(n) |      2           3           5           6           8        ...
%e A309793 --------------------------------------------------------------------------
%t A309793 LinearRecurrence[{2, -1, 0, 0, 0, 1, -2, 2, -2, 1, 0, 0, 0, -1, 2, -1}, {0, 0, 0, 0, 1, 1, 1, 1, 2, 3, 5, 6, 8, 9, 11, 13}, 50]
%o A309793 (PARI) concat([0,0,0,0], Vec(x^4*(1 - x + x^4) / ((1 - x)^4*(1 + x)^2*(1 - x + x^2)*(1 + x^2)*(1 + x + x^2)*(1 + x^4)) + O(x^50))) \\ _Colin Barker_, Oct 10 2019
%Y A309793 Cf. A309795, A309797, A026928.
%K A309793 nonn,easy
%O A309793 0,9
%A A309793 _Wesley Ivan Hurt_, Aug 17 2019