cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309795 Number of even parts appearing among the second largest parts of the partitions of n into 4 parts.

This page as a plain text file.
%I A309795 #21 Oct 10 2019 08:16:30
%S A309795 0,0,0,0,0,0,1,2,3,3,4,5,7,9,12,14,17,19,23,27,32,36,42,47,54,60,68,
%T A309795 75,84,92,103,113,125,135,148,160,175,189,206,221,239,255,275,294,316,
%U A309795 336,360,382,408,432,460,486,516,544,577,608,643,675,712,747
%N A309795 Number of even parts appearing among the second largest parts of the partitions of n into 4 parts.
%H A309795 Colin Barker, <a href="/A309795/b309795.txt">Table of n, a(n) for n = 0..1000</a>
%H A309795 <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%H A309795 <a href="/index/Rec#order_16">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,0,0,0,1,-2,2,-2,1,0,0,0,-1,2,-1).
%F A309795 a(n) = Sum_{k=1..floor(n/4)} Sum_{j=k..floor((n-k)/3)} Sum_{i=j..floor((n-j-k)/2)} ((i-1) mod 2).
%F A309795 From _Colin Barker_, Aug 18 2019: (Start)
%F A309795 G.f.: x^6*(1 - x^3 + x^4) / ((1 - x)^4*(1 + x)^2*(1 - x + x^2)*(1 + x^2)*(1 + x + x^2)*(1 + x^4)).
%F A309795 a(n) = 2*a(n-1) - a(n-2) + a(n-6) - 2*a(n-7) + 2*a(n-8) - 2*a(n-9) + a(n-10) - a(n-14) + 2*a(n-15) - a(n-16) for n>15.
%F A309795 (End) [Recurrence verified by _Wesley Ivan Hurt_, Aug 25 2019]
%e A309795 Figure 1: The partitions of n into 4 parts for n = 8, 9, ..
%e A309795                                                          1+1+1+9
%e A309795                                                          1+1+2+8
%e A309795                                                          1+1+3+7
%e A309795                                                          1+1+4+6
%e A309795                                              1+1+1+8     1+1+5+5
%e A309795                                              1+1+2+7     1+2+2+7
%e A309795                                  1+1+1+7     1+1+3+6     1+2+3+6
%e A309795                                  1+1+2+6     1+1+4+5     1+2+4+5
%e A309795                                  1+1+3+5     1+2+2+6     1+3+3+5
%e A309795                      1+1+1+6     1+1+4+4     1+2+3+5     1+3+4+4
%e A309795          1+1+1+5     1+1+2+5     1+2+2+5     1+2+4+4     2+2+2+6
%e A309795          1+1+2+4     1+1+3+4     1+2+3+4     1+3+3+4     2+2+3+5
%e A309795          1+1+3+3     1+2+2+4     1+3+3+3     2+2+2+5     2+2+4+4
%e A309795          1+2+2+3     1+2+3+3     2+2+2+4     2+2+3+4     2+3+3+4
%e A309795          2+2+2+2     2+2+2+3     2+2+3+3     2+3+3+3     3+3+3+3
%e A309795 --------------------------------------------------------------------------
%e A309795   n  |      8           9          10          11          12        ...
%e A309795 --------------------------------------------------------------------------
%e A309795 a(n) |      3           3           4           5           7        ...
%e A309795 --------------------------------------------------------------------------
%t A309795 LinearRecurrence[{2, -1, 0, 0, 0, 1, -2, 2, -2, 1, 0, 0, 0, -1, 2, -1}, {0, 0, 0, 0, 0, 0, 1, 2, 3, 3, 4, 5, 7, 9, 12, 14}, 50]
%o A309795 (PARI) concat([0,0,0,0,0,0], Vec(x^6*(1 - x^3 + x^4) / ((1 - x)^4*(1 + x)^2*(1 - x + x^2)*(1 + x^2)*(1 + x + x^2)*(1 + x^4)) + O(x^70))) \\ _Colin Barker_, Oct 10 2019
%Y A309795 Cf. A309793, A309797, A026928.
%K A309795 nonn,easy
%O A309795 0,8
%A A309795 _Wesley Ivan Hurt_, Aug 17 2019