A309797 Lexicographically earliest sequence of positive integers such that for any n > 0 there are no more than a(n) numbers k > 0 such that a(n + k) = a(n + 2*k).
1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 3, 3, 2, 2, 2, 4, 2, 4, 5, 4, 1, 1, 1, 1, 3, 3, 3, 1, 6, 6, 6, 7, 5, 3, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 7, 5, 7, 5, 8, 5, 8, 8, 8, 8, 3, 1, 1, 1, 1, 9, 9, 6, 1, 1, 1, 1, 10, 3, 3, 3, 6, 6, 6, 6, 6, 7, 6, 3, 9, 2, 2, 2, 2, 2, 2
Offset: 1
Examples
The first terms, alongside the corresponding k's, are: n a(n) k's -- ---- ---------- 1 1 {1} 2 1 {1} 3 1 {2} 4 1 {1} 5 2 {1, 3} 6 2 {2, 14} 7 2 {1, 2} 8 1 {1} 9 1 {1} 10 1 {4} 11 1 {1} 12 3 {2, 3, 68} 13 3 {1, 4, 22} 14 2 {1, 2}
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..10000
- Rémy Sigrist, PARI program for A309797
- Rémy Sigrist, Scatterplot of the first 500000 terms
Programs
-
PARI
See Links section.
Formula
a(n) >= #{ k>0 such that a(n+k) = a(n+2*k) }.
Comments