This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309805 #27 Apr 04 2024 15:39:55 %S A309805 1,2,7,10,19,24,37,44,61,70,91,102,127,140,169,184,217,234,271,290, %T A309805 331,352,397,420,469,494,547,574,631,660,721,752,817,850,919,954,1027, %U A309805 1064,1141,1180,1261,1302,1387,1430,1519,1564,1657,1704,1801,1850,1951,2002 %N A309805 Maximum number of nonattacking kings placeable on a hexagonal board with edge-length n in Glinski's hexagonal chess. %H A309805 Chess variants, <a href="https://www.chessvariants.com/hexagonal.dir/hexagonal.html">Glinski's Hexagonal Chess</a> %H A309805 Wikipedia, <a href="https://en.wikipedia.org/wiki/Hexagonal_chess#Gli%C5%84ski's_hexagonal_chess">Hexagonal chess - GliĆski's hexagonal chess</a> %H A309805 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,2,-2,-1,1). %F A309805 a(n) = n^2 - floor(n/2) - floor(n/2)^2. %F A309805 From _Stefano Spezia_, Aug 18 2019 (Start) %F A309805 G.f.: - (1 + x + 3*x^2 + x^3)/((- 1 + x)^3*(1 + x)^2). %F A309805 E.g.f.: (1/8)*exp(-x)*(-1 + 2*x + exp(2*x)*(1 + 4*x + 6*x^2)). %F A309805 a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n > 5. %F A309805 a(n) = (1/16)*(3 + (-1)^(1+2*n) - 4*n + 12*n^2 - 2*(-1)^n*(1 + 2*n)). %F A309805 a(2*n-1) = A003215(n). %F A309805 a(2*n) = A049450(n). %F A309805 (End) %e A309805 a(1) = 1 %e A309805 . %e A309805 o %e A309805 . %e A309805 a(2) = 2 %e A309805 . %e A309805 . . %e A309805 o . o %e A309805 . . %e A309805 . %e A309805 a(3) = 7 %e A309805 . %e A309805 o . o %e A309805 . . . . %e A309805 o . o . o %e A309805 . . . . %e A309805 o . o %e A309805 . %e A309805 a(4) = 10 %e A309805 . %e A309805 . . . . %e A309805 o . o . o %e A309805 . . . . . . %e A309805 o . o . o . o %e A309805 . . . . . . %e A309805 o . o . o %e A309805 . . . . %e A309805 . %t A309805 nn:=51; CoefficientList[Series[- (1 + x + 3*x^2 + x^3)/((- 1 + x)^3*(1 + x)^2),{x, 0, nn}], x] (* _Georg Fischer_, May 10 2020 *) %o A309805 (PARI) a(n) = n^2 - (n\2) - (n\2)^2; \\ _Andrew Howroyd_, Aug 17 2019 %o A309805 (Python) %o A309805 def A309805(n): return n**2-(m:=n>>1)*(m+1) # _Chai Wah Wu_, Apr 04 2024 %Y A309805 Cf. A003215, A049450. %Y A309805 Partial sums of A133090. %K A309805 nonn,easy %O A309805 1,2 %A A309805 _Sangeet Paul_, Aug 17 2019