This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309815 #18 Aug 20 2019 01:13:28 %S A309815 1,2,3,6,7,13,21,112,243,275,466,761,1128,4704,9523,10730,17579,28085, %T A309815 41041,165312,331299,372815,607754,967441,1410360,5648160,11300259, %U A309815 12713402,20707831,32942845,48005301,192060400,384143763,432165299,703818922,1119543881,1631318640 %N A309815 a(n) is the smallest positive integer x such that sqrt(2) + sqrt(x) is closer to an integer than any other value already in the sequence. %C A309815 If b(n) = round(sqrt(2) + sqrt(a(n))), then (b(n)^2 + 2 - a(n))/(2*b(n)) is an approximation for sqrt(2). Conjecture: all convergents of the continued fraction of sqrt(2) except 1 arise in this way. - _Robert Israel_, Aug 18 2019 %e A309815 a(6) = 13 because sqrt(2)+sqrt(13) is closer to an integer than any of the previous 5 terms. %p A309815 R:= 1: delta:= sqrt(2)-1: %p A309815 for r from 2 to 10000 do %p A309815 x0:= ceil((r - sqrt(2)-delta)^2); %p A309815 x1:= floor((r-sqrt(2)+delta)^2); %p A309815 for x from x0 to x1 do %p A309815 dx:= abs(sqrt(2)+sqrt(x)-r); %p A309815 if is(dx < delta) then %p A309815 delta:= dx; %p A309815 R:= R, x; %p A309815 fi %p A309815 od %p A309815 od: %p A309815 R; # _Robert Israel_, Aug 18 2019 %t A309815 d[x_] := Abs[x - Round[x]]; dm = 1; s = {}; Do[If[(d1 = d[Sqrt[2] + Sqrt[n]]) < dm, dm = d1; AppendTo[s, n]], {n, 1, 10^5}]; s (* _Amiram Eldar_, Aug 18 2019 *) %o A309815 (Python) import math %o A309815 a = 2**(1/2) %o A309815 l = [] %o A309815 closest = 1.0 %o A309815 for i in range(1, 100000000): %o A309815 b = i**(1/2) %o A309815 c = abs(a+b - round(a+b)) %o A309815 if c < closest: %o A309815 print(i, c) %o A309815 closest = c %o A309815 l.append(i) %o A309815 print(l) %K A309815 nonn %O A309815 1,2 %A A309815 _Ben Paul Thurston_, Aug 18 2019 %E A309815 More terms from _Giovanni Resta_, Aug 19 2019