A326927 Lexicographically earliest sequence of distinct positive integers such that for any n > 0, a(n+1)/a(n) = p^x * q^y where p and q are two distinct prime numbers and {abs(x), abs(y)} = {1, 2}.
1, 12, 9, 2, 24, 18, 4, 3, 25, 7, 84, 48, 36, 8, 6, 27, 15, 20, 16, 28, 21, 75, 33, 44, 55, 45, 10, 98, 22, 50, 14, 63, 35, 125, 65, 52, 39, 147, 51, 68, 85, 153, 34, 242, 26, 117, 81, 99, 77, 175, 49, 5, 60, 80, 64, 112, 140, 105, 135, 30, 40, 32, 56, 42, 54
Offset: 1
Keywords
Examples
The first terms, alongside a(n+1)/a(n), are: n a(n) a(n+1)/a(n) -- ---- ----------- 1 1 2^+2 * 3^+1 2 12 2^-2 * 3^+1 3 9 2^+1 * 3^-2 4 2 2^+2 * 3^+1 5 24 2^-2 * 3^+1 6 18 2^+1 * 3^-2 7 4 2^-2 * 3^+1 8 3 3^-1 * 5^+2 9 25 5^-2 * 7^+1 10 7 2^+2 * 3^+1
Links
- Rémy Sigrist, PARI program for A326927
Programs
-
PARI
See Links section.
Comments