This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309818 #21 Aug 23 2019 11:23:57 %S A309818 1,4,8,7,1,5,1,7,8,8,5,1,2,0,6,2,9,1,0,8,2,1,7,1,7,8,2,9,0,7,1,7,1,3, %T A309818 1,1,5,8,2,0,4,3,7,0,6,1,3,0,9,6,4,1,6,8,0,8,0,1,6,9,3,8,5,8,8,3,3,4, %U A309818 8,2,8,1,7,6,1,5,3,7,9,0,3,2,6,9,6,9,6,4,0,5,3,1,0,8,7,5,2,6,9,7 %N A309818 Digits of the 10-adic integer (987654321/(1-10^9))^(1/3). %C A309818 x = ...113171709287171280192602158871517841. %C A309818 x^3 = ...987654321987654321987654321987654321. %H A309818 Seiichi Manyama, <a href="/A309818/b309818.txt">Table of n, a(n) for n = 0..10000</a> %e A309818 1^3 == 1 (mod 10). %e A309818 41^3 == 21 (mod 10^2). %e A309818 841^3 == 321 (mod 10^3). %e A309818 7841^3 == 4321 (mod 10^4). %e A309818 17841^3 == 54321 (mod 10^5). %e A309818 517841^3 == 654321 (mod 10^6). %e A309818 1517841^3 == 7654321 (mod 10^7). %e A309818 71517841^3 == 87654321 (mod 10^8). %e A309818 871517841^3 == 987654321 (mod 10^9). %o A309818 (PARI) N=100; M=987654321/(1-10^9); Vecrev(digits(lift(chinese(Mod((M+O(2^N))^(1/3), 2^N), Mod((M+O(5^N))^(1/3), 5^N)))), N) %Y A309818 Digits of the 10-adic integer (987654321/(1-10^9))^(1/k): this sequence (k=3), A309819 (k=7), A309820 (k=9). %Y A309818 Cf. A010888, A138531, A309821, A309824. %K A309818 nonn,base %O A309818 0,2 %A A309818 _Seiichi Manyama_, Aug 18 2019