This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309819 #16 Aug 23 2019 11:24:01 %S A309819 1,6,9,2,4,8,8,2,9,8,5,7,4,7,6,1,3,4,0,1,2,7,2,6,2,5,7,3,2,1,3,2,1,2, %T A309819 1,6,1,6,5,5,6,8,6,8,4,9,4,0,4,4,0,6,1,4,1,4,5,4,7,1,1,5,4,6,0,4,2,5, %U A309819 5,7,7,0,8,6,1,2,7,0,0,0,3,4,1,5,4,9,0,9,1,9,3,4,7,8,3,6,5,7,1,0 %N A309819 Digits of the 10-adic integer (987654321/(1-10^9))^(1/7). %C A309819 x = ...612123123752627210431674758928842961. %C A309819 x^7 = ...987654321987654321987654321987654321. %H A309819 Seiichi Manyama, <a href="/A309819/b309819.txt">Table of n, a(n) for n = 0..10000</a> %e A309819 1^7 == 1 (mod 10). %e A309819 61^7 == 21 (mod 10^2). %e A309819 961^7 == 321 (mod 10^3). %e A309819 2961^7 == 4321 (mod 10^4). %e A309819 42961^7 == 54321 (mod 10^5). %e A309819 842961^7 == 654321 (mod 10^6). %e A309819 8842961^7 == 7654321 (mod 10^7). %e A309819 28842961^7 == 87654321 (mod 10^8). %e A309819 928842961^7 == 987654321 (mod 10^9). %o A309819 (PARI) N=100; M=987654321/(1-10^9); Vecrev(digits(lift(chinese(Mod((M+O(2^N))^(1/7), 2^N), Mod((M+O(5^N))^(1/7), 5^N)))), N) %Y A309819 Digits of the 10-adic integer (987654321/(1-10^9))^(1/k): A309818 (k=3), this sequence (k=7), A309820 (k=9). %Y A309819 Cf. A010888, A138531, A309822, A309825. %K A309819 nonn,base %O A309819 0,2 %A A309819 _Seiichi Manyama_, Aug 18 2019