This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309820 #17 Aug 23 2019 11:20:05 %S A309820 1,8,8,0,4,8,4,1,9,6,7,0,7,7,1,0,5,0,5,6,6,3,6,0,7,8,5,4,6,6,7,3,7,8, %T A309820 3,3,6,5,8,6,2,2,5,7,8,4,5,0,5,0,3,1,2,4,3,3,9,7,9,7,8,7,6,1,3,4,1,2, %U A309820 2,9,7,7,4,9,2,8,0,0,4,3,4,9,7,5,3,7,1,9,1,1,7,8,3,5,0,7,5,2,3,3 %N A309820 Digits of the 10-adic integer (987654321/(1-10^9))^(1/9). %C A309820 x = ...338737664587063665050177076914840881. %C A309820 x^9 = ...987654321987654321987654321987654321. %H A309820 Seiichi Manyama, <a href="/A309820/b309820.txt">Table of n, a(n) for n = 0..10000</a> %e A309820 1^9 == 1 (mod 10). %e A309820 81^9 == 21 (mod 10^2). %e A309820 881^9 == 321 (mod 10^3). %e A309820 881^9 == 4321 (mod 10^4). %e A309820 40881^9 == 54321 (mod 10^5). %e A309820 840881^9 == 654321 (mod 10^6). %e A309820 4840881^9 == 7654321 (mod 10^7). %e A309820 14840881^9 == 87654321 (mod 10^8). %e A309820 914840881^9 == 987654321 (mod 10^9). %o A309820 (PARI) N=100; M=987654321/(1-10^9); Vecrev(digits(lift(chinese(Mod((M+O(2^N))^(1/9), 2^N), Mod((M+O(5^N))^(1/9), 5^N)))), N) %Y A309820 Digits of the 10-adic integer (987654321/(1-10^9))^(1/k): A309818 (k=3), A309819 (k=7), this sequence (k=9). %Y A309820 Cf. A010888, A138531, A309823, A309826. %K A309820 nonn,base %O A309820 0,2 %A A309820 _Seiichi Manyama_, Aug 18 2019