cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309821 Digits of the 10-adic integer (123456789/(1-10^9))^(1/3).

This page as a plain text file.
%I A309821 #15 Aug 24 2019 10:44:19
%S A309821 9,2,8,8,5,6,4,6,4,7,5,2,1,8,4,9,6,6,2,8,9,9,4,5,1,1,1,4,2,8,2,7,9,9,
%T A309821 4,1,1,4,3,9,3,5,1,8,3,2,5,7,4,3,0,7,7,1,4,8,7,8,5,8,7,3,8,8,5,6,0,8,
%U A309821 3,1,7,8,0,3,2,7,3,7,6,6,0,2,6,1,7,9,8,9,4,0,9,6,7,6,1,8,3,8,8,1
%N A309821 Digits of the 10-adic integer (123456789/(1-10^9))^(1/3).
%C A309821 x   = ...149972824111549982669481257464658829.
%C A309821 x^3 = ...123456789123456789123456789123456789.
%H A309821 Seiichi Manyama, <a href="/A309821/b309821.txt">Table of n, a(n) for n = 0..10000</a>
%e A309821           9^3 == 9         (mod 10).
%e A309821          29^3 == 89        (mod 10^2).
%e A309821         829^3 == 789       (mod 10^3).
%e A309821        8829^3 == 6789      (mod 10^4).
%e A309821       58829^3 == 56789     (mod 10^5).
%e A309821      658829^3 == 456789    (mod 10^6).
%e A309821     4658829^3 == 3456789   (mod 10^7).
%e A309821    64658829^3 == 23456789  (mod 10^8).
%e A309821   464658829^3 == 123456789 (mod 10^9).
%o A309821 (PARI) N=100; M=123456789/(1-10^9); Vecrev(digits(lift(chinese(Mod((M+O(2^N))^(1/3), 2^N), Mod((M+O(5^N))^(1/3), 5^N)))), N)
%Y A309821 Digits of the 10-adic integer (123456789/(1-10^9))^(1/k): this sequence (k=3), A309822 (k=7), A309823 (k=9).
%Y A309821 Cf. A309818.
%K A309821 nonn,base
%O A309821 0,1
%A A309821 _Seiichi Manyama_, Aug 18 2019