This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309822 #12 Aug 24 2019 10:46:51 %S A309822 9,6,6,2,7,2,7,9,1,5,2,3,8,4,6,6,9,4,7,3,2,7,8,7,5,7,6,1,9,2,7,2,4,0, %T A309822 6,3,0,8,5,6,7,5,1,4,7,8,0,1,4,4,4,7,3,7,4,6,8,9,1,2,7,4,3,8,4,0,3,6, %U A309822 8,2,3,7,5,6,0,5,5,2,9,8,5,8,9,6,6,5,3,3,0,6,5,3,6,1,5,6,9,6,7,1 %N A309822 Digits of the 10-adic integer (123456789/(1-10^9))^(1/7). %C A309822 x = ...360427291675787237496648325197272669. %C A309822 x^7 = ...123456789123456789123456789123456789. %H A309822 Seiichi Manyama, <a href="/A309822/b309822.txt">Table of n, a(n) for n = 0..10000</a> %e A309822 9^7 == 9 (mod 10). %e A309822 69^7 == 89 (mod 10^2). %e A309822 669^7 == 789 (mod 10^3). %e A309822 2669^7 == 6789 (mod 10^4). %e A309822 72669^7 == 56789 (mod 10^5). %e A309822 272669^7 == 456789 (mod 10^6). %e A309822 7272669^7 == 3456789 (mod 10^7). %e A309822 97272669^7 == 23456789 (mod 10^8). %e A309822 197272669^7 == 123456789 (mod 10^9). %o A309822 (PARI) N=100; M=123456789/(1-10^9); Vecrev(digits(lift(chinese(Mod((M+O(2^N))^(1/7), 2^N), Mod((M+O(5^N))^(1/7), 5^N)))), N) %Y A309822 Digits of the 10-adic integer (123456789/(1-10^9))^(1/k): A309821 (k=3), this sequence (k=7), A309823 (k=9). %Y A309822 Cf. A309819. %K A309822 nonn,base %O A309822 0,1 %A A309822 _Seiichi Manyama_, Aug 18 2019