This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309823 #12 Aug 24 2019 10:51:43 %S A309823 9,0,7,6,0,0,6,1,6,9,1,8,2,2,4,2,2,4,8,1,1,7,6,7,7,9,4,7,2,7,2,8,1,4, %T A309823 3,7,5,2,9,9,1,1,2,2,9,5,0,1,2,6,3,8,3,6,1,8,3,2,0,0,3,9,1,1,1,5,8,4, %U A309823 3,3,3,8,1,1,9,0,9,4,7,3,8,7,4,5,7,9,2,6,3,8,3,2,1,9,9,4,0,2,2,4 %N A309823 Digits of the 10-adic integer (123456789/(1-10^9))^(1/9). %C A309823 x = ...734182727497767118422422819616006709. %C A309823 x^9 = ...123456789123456789123456789123456789. %H A309823 Seiichi Manyama, <a href="/A309823/b309823.txt">Table of n, a(n) for n = 0..10000</a> %e A309823 9^9 == 9 (mod 10). %e A309823 9^9 == 89 (mod 10^2). %e A309823 709^9 == 789 (mod 10^3). %e A309823 6709^9 == 6789 (mod 10^4). %e A309823 6709^9 == 56789 (mod 10^5). %e A309823 6709^9 == 456789 (mod 10^6). %e A309823 6006709^9 == 3456789 (mod 10^7). %e A309823 16006709^9 == 23456789 (mod 10^8). %e A309823 616006709^9 == 123456789 (mod 10^9). %o A309823 (PARI) N=100; M=123456789/(1-10^9); Vecrev(digits(lift(chinese(Mod((M+O(2^N))^(1/9), 2^N), Mod((M+O(5^N))^(1/9), 5^N)))), N) %Y A309823 Digits of the 10-adic integer (123456789/(1-10^9))^(1/k): A309821 (k=3), A309822 (k=7), this sequence (k=9). %Y A309823 Cf. A309820. %K A309823 nonn,base %O A309823 0,1 %A A309823 _Seiichi Manyama_, Aug 18 2019