This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309824 #17 Aug 24 2019 14:21:33 %S A309824 1,4,8,7,1,5,1,7,8,7,5,5,8,0,6,0,8,4,0,2,4,6,5,9,1,5,4,0,5,2,8,6,0,3, %T A309824 5,7,2,9,5,7,9,4,4,5,3,8,1,1,0,9,3,5,4,8,4,7,4,4,3,1,3,5,0,3,7,0,2,0, %U A309824 9,8,7,2,6,1,1,6,1,0,5,9,7,6,3,6,7,7,6,7,7,0,9,8,1,4,3,3,3,3,7,1 %N A309824 Digits of the 10-adic integer (2345678987654321/(1-10^16))^(1/3). %C A309824 x = ...068250451956420480608557871517841. %C A309824 x^3 = ...123456789876543212345678987654321. %H A309824 Seiichi Manyama, <a href="/A309824/b309824.txt">Table of n, a(n) for n = 0..10000</a> %e A309824 1^3 == 1 (mod 10). %e A309824 41^3 == 21 (mod 10^2). %e A309824 841^3 == 321 (mod 10^3). %e A309824 7841^3 == 4321 (mod 10^4). %e A309824 17841^3 == 54321 (mod 10^5). %e A309824 517841^3 == 654321 (mod 10^6). %e A309824 1517841^3 == 7654321 (mod 10^7). %e A309824 71517841^3 == 87654321 (mod 10^8). %e A309824 871517841^3 == 987654321 (mod 10^9). %e A309824 7871517841^3 == 8987654321 (mod 10^10). %e A309824 57871517841^3 == 78987654321 (mod 10^11). %e A309824 557871517841^3 == 678987654321 (mod 10^12). %e A309824 8557871517841^3 == 5678987654321 (mod 10^13). %e A309824 8557871517841^3 == 45678987654321 (mod 10^14). %e A309824 608557871517841^3 == 345678987654321 (mod 10^15). %e A309824 608557871517841^3 == 2345678987654321 (mod 10^16). %e A309824 80608557871517841^3 == 12345678987654321 (mod 10^17). %o A309824 (PARI) N=100; M=2345678987654321/(1-10^16); Vecrev(digits(lift(chinese(Mod((M+O(2^N))^(1/3), 2^N), Mod((M+O(5^N))^(1/3), 5^N)))), N) %Y A309824 Digits of the 10-adic integer (2345678987654321/(1-10^16))^(1/k): this sequence (k=3), A309825 (k=7), A309826 (k=9). %Y A309824 Cf. A309818. %K A309824 nonn,base %O A309824 0,2 %A A309824 _Seiichi Manyama_, Aug 18 2019