This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309825 #15 Aug 24 2019 14:21:45 %S A309825 1,6,9,2,4,8,8,2,9,9,4,6,9,7,6,9,8,5,3,1,4,8,8,1,6,4,8,4,5,6,4,2,0,2, %T A309825 7,9,8,7,5,9,7,8,7,9,8,6,5,0,8,4,5,1,4,6,8,0,2,5,0,8,8,9,4,8,1,3,5,2, %U A309825 3,6,0,8,6,8,2,0,3,3,5,6,5,1,8,8,5,5,3,4,8,5,0,7,6,6,8,5,7,8,0,9 %N A309825 Digits of the 10-adic integer (2345678987654321/(1-10^16))^(1/7). %C A309825 x = ...024654846188413589679649928842961. %C A309825 x^7 = ...123456789876543212345678987654321. %H A309825 Seiichi Manyama, <a href="/A309825/b309825.txt">Table of n, a(n) for n = 0..10000</a> %e A309825 1^7 == 1 (mod 10). %e A309825 61^7 == 21 (mod 10^2). %e A309825 961^7 == 321 (mod 10^3). %e A309825 2961^7 == 4321 (mod 10^4). %e A309825 42961^7 == 54321 (mod 10^5). %e A309825 842961^7 == 654321 (mod 10^6). %e A309825 8842961^7 == 7654321 (mod 10^7). %e A309825 28842961^7 == 87654321 (mod 10^8). %e A309825 928842961^7 == 987654321 (mod 10^9). %e A309825 9928842961^7 == 8987654321 (mod 10^10). %e A309825 49928842961^7 == 78987654321 (mod 10^11). %e A309825 649928842961^7 == 678987654321 (mod 10^12). %e A309825 9649928842961^7 == 5678987654321 (mod 10^13). %e A309825 79649928842961^7 == 45678987654321 (mod 10^14). %e A309825 679649928842961^7 == 345678987654321 (mod 10^15). %e A309825 9679649928842961^7 == 2345678987654321 (mod 10^16). %e A309825 89679649928842961^7 == 12345678987654321 (mod 10^17). %o A309825 (PARI) N=100; M=2345678987654321/(1-10^16); Vecrev(digits(lift(chinese(Mod((M+O(2^N))^(1/7), 2^N), Mod((M+O(5^N))^(1/7), 5^N)))), N) %Y A309825 Digits of the 10-adic integer (2345678987654321/(1-10^16))^(1/k): A309824 (k=3), this sequence (k=7), A309826 (k=9). %Y A309825 Cf. A309819. %K A309825 nonn,base %O A309825 0,2 %A A309825 _Seiichi Manyama_, Aug 18 2019