cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309825 Digits of the 10-adic integer (2345678987654321/(1-10^16))^(1/7).

This page as a plain text file.
%I A309825 #15 Aug 24 2019 14:21:45
%S A309825 1,6,9,2,4,8,8,2,9,9,4,6,9,7,6,9,8,5,3,1,4,8,8,1,6,4,8,4,5,6,4,2,0,2,
%T A309825 7,9,8,7,5,9,7,8,7,9,8,6,5,0,8,4,5,1,4,6,8,0,2,5,0,8,8,9,4,8,1,3,5,2,
%U A309825 3,6,0,8,6,8,2,0,3,3,5,6,5,1,8,8,5,5,3,4,8,5,0,7,6,6,8,5,7,8,0,9
%N A309825 Digits of the 10-adic integer (2345678987654321/(1-10^16))^(1/7).
%C A309825 x   = ...024654846188413589679649928842961.
%C A309825 x^7 = ...123456789876543212345678987654321.
%H A309825 Seiichi Manyama, <a href="/A309825/b309825.txt">Table of n, a(n) for n = 0..10000</a>
%e A309825                   1^7 == 1                 (mod 10).
%e A309825                  61^7 == 21                (mod 10^2).
%e A309825                 961^7 == 321               (mod 10^3).
%e A309825                2961^7 == 4321              (mod 10^4).
%e A309825               42961^7 == 54321             (mod 10^5).
%e A309825              842961^7 == 654321            (mod 10^6).
%e A309825             8842961^7 == 7654321           (mod 10^7).
%e A309825            28842961^7 == 87654321          (mod 10^8).
%e A309825           928842961^7 == 987654321         (mod 10^9).
%e A309825          9928842961^7 == 8987654321        (mod 10^10).
%e A309825         49928842961^7 == 78987654321       (mod 10^11).
%e A309825        649928842961^7 == 678987654321      (mod 10^12).
%e A309825       9649928842961^7 == 5678987654321     (mod 10^13).
%e A309825      79649928842961^7 == 45678987654321    (mod 10^14).
%e A309825     679649928842961^7 == 345678987654321   (mod 10^15).
%e A309825    9679649928842961^7 == 2345678987654321  (mod 10^16).
%e A309825   89679649928842961^7 == 12345678987654321 (mod 10^17).
%o A309825 (PARI) N=100; M=2345678987654321/(1-10^16); Vecrev(digits(lift(chinese(Mod((M+O(2^N))^(1/7), 2^N), Mod((M+O(5^N))^(1/7), 5^N)))), N)
%Y A309825 Digits of the 10-adic integer (2345678987654321/(1-10^16))^(1/k): A309824 (k=3), this sequence (k=7), A309826 (k=9).
%Y A309825 Cf. A309819.
%K A309825 nonn,base
%O A309825 0,2
%A A309825 _Seiichi Manyama_, Aug 18 2019