This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309826 #13 Aug 24 2019 14:21:20 %S A309826 1,8,8,0,4,8,4,1,9,9,2,7,6,6,8,8,6,9,3,6,4,4,0,1,1,5,8,7,2,4,6,0,9,4, %T A309826 0,7,1,6,3,9,4,2,5,3,3,9,9,5,1,1,4,6,3,0,7,6,8,7,1,4,8,8,2,7,8,0,3,7, %U A309826 3,8,0,2,9,5,1,4,4,5,3,5,8,3,1,8,7,9,8,8,7,8,6,5,2,7,4,5,6,2,2,7 %N A309826 Digits of the 10-adic integer (2345678987654321/(1-10^16))^(1/9). %C A309826 x = ...906427851104463968866729914840881. %C A309826 x^9 = ...123456789876543212345678987654321. %H A309826 Seiichi Manyama, <a href="/A309826/b309826.txt">Table of n, a(n) for n = 0..10000</a> %e A309826 1^9 == 1 (mod 10). %e A309826 81^9 == 21 (mod 10^2). %e A309826 881^9 == 321 (mod 10^3). %e A309826 881^9 == 4321 (mod 10^4). %e A309826 40881^9 == 54321 (mod 10^5). %e A309826 840881^9 == 654321 (mod 10^6). %e A309826 4840881^9 == 7654321 (mod 10^7). %e A309826 14840881^9 == 87654321 (mod 10^8). %e A309826 914840881^9 == 987654321 (mod 10^9). %e A309826 9914840881^9 == 8987654321 (mod 10^10). %e A309826 29914840881^9 == 78987654321 (mod 10^11). %e A309826 729914840881^9 == 678987654321 (mod 10^12). %e A309826 6729914840881^9 == 5678987654321 (mod 10^13). %e A309826 66729914840881^9 == 45678987654321 (mod 10^14). %e A309826 866729914840881^9 == 345678987654321 (mod 10^15). %e A309826 8866729914840881^9 == 2345678987654321 (mod 10^16). %e A309826 68866729914840881^9 == 12345678987654321 (mod 10^17). %o A309826 (PARI) N=100; M=2345678987654321/(1-10^16); Vecrev(digits(lift(chinese(Mod((M+O(2^N))^(1/9), 2^N), Mod((M+O(5^N))^(1/9), 5^N)))), N) %Y A309826 Digits of the 10-adic integer (2345678987654321/(1-10^16))^(1/k): A309824 (k=3), A309825 (k=7), this sequence (k=9). %Y A309826 Cf. A309820. %K A309826 nonn,base %O A309826 0,2 %A A309826 _Seiichi Manyama_, Aug 18 2019