cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309830 Sum of the odd parts appearing among the smallest parts of the partitions of n into 5 parts.

This page as a plain text file.
%I A309830 #29 Nov 07 2019 08:13:15
%S A309830 0,0,0,0,0,1,1,2,3,5,6,9,11,15,18,26,30,40,48,62,72,91,105,129,148,
%T A309830 182,206,248,282,335,377,443,496,576,642,743,823,943,1044,1188,1308,
%U A309830 1479,1623,1823,1994,2233,2433,2709,2948,3268,3544,3913,4233,4654,5023
%N A309830 Sum of the odd parts appearing among the smallest parts of the partitions of n into 5 parts.
%H A309830 <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%H A309830 <a href="/index/Rec#order_28">Index entries for linear recurrences with constant coefficients</a>, signature (1,2,-1,-2,-1,2,1,-1,0,2,-2,-4,2,4,2,-4,-2,2,0,-1,1,2,-1,-2,-1,2,1,-1).
%F A309830 a(n) = Sum_{l=1..floor(n/5)} Sum_{k=l..floor((n-l)/4)} Sum_{j=k..floor((n-k-l)/3)} Sum_{i=j..floor((n-j-k-l)/2)} l * (l mod 2).
%F A309830 a(n) = a(n-1) + 2*a(n-2) - a(n-3) - 2*a(n-4) - a(n-5) + 2*a(n-6) + a(n-7) - a(n-8) + 2*a(n-10) - 2*a(n-11) - 4*a(n-12) + 2*a(n-13) + 4*a(n-14) + 2*a(n-15) - 4*a(n-16) - 2*a(n-17) + 2*a(n-18) - a(n-20) + a(n-21) + 2*a(n-22) - a(n-23) - 2*a(n-24) - a(n-25) + 2*a(n-26) + a(n-27) - a(n-28) for n > 27.
%e A309830 Figure 1: The partitions of n into 5 parts for n = 5, 6, ...
%e A309830                                                         1+1+1+1+5
%e A309830                                                         1+1+1+2+4
%e A309830                                             1+1+1+1+4   1+1+1+3+3
%e A309830                                 1+1+1+1+3   1+1+1+2+3   1+1+2+2+3
%e A309830         1+1+1+1+1   1+1+1+1+2   1+1+1+2+2   1+1+2+2+2   1+2+2+2+2
%e A309830 -----------------------------------------------------------------------
%e A309830   n  |      5           6           7           8           9       ...
%e A309830 -----------------------------------------------------------------------
%e A309830 a(n) |      1           1           2           3           5       ...
%e A309830 -----------------------------------------------------------------------
%t A309830 LinearRecurrence[{1, 2, -1, -2, -1, 2, 1, -1, 0, 2, -2, -4, 2, 4,
%t A309830   2, -4, -2, 2, 0, -1, 1, 2, -1, -2, -1, 2, 1, -1}, {0, 0, 0, 0, 0, 1,
%t A309830    1, 2, 3, 5, 6, 9, 11, 15, 18, 26, 30, 40, 48, 62, 72, 91, 105, 129,
%t A309830    148, 182, 206, 248}, 50]
%Y A309830 Cf. A309787, A309831, A309834.
%K A309830 nonn
%O A309830 0,8
%A A309830 _Wesley Ivan Hurt_, Aug 19 2019