This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309830 #29 Nov 07 2019 08:13:15 %S A309830 0,0,0,0,0,1,1,2,3,5,6,9,11,15,18,26,30,40,48,62,72,91,105,129,148, %T A309830 182,206,248,282,335,377,443,496,576,642,743,823,943,1044,1188,1308, %U A309830 1479,1623,1823,1994,2233,2433,2709,2948,3268,3544,3913,4233,4654,5023 %N A309830 Sum of the odd parts appearing among the smallest parts of the partitions of n into 5 parts. %H A309830 <a href="/index/Par#part">Index entries for sequences related to partitions</a> %H A309830 <a href="/index/Rec#order_28">Index entries for linear recurrences with constant coefficients</a>, signature (1,2,-1,-2,-1,2,1,-1,0,2,-2,-4,2,4,2,-4,-2,2,0,-1,1,2,-1,-2,-1,2,1,-1). %F A309830 a(n) = Sum_{l=1..floor(n/5)} Sum_{k=l..floor((n-l)/4)} Sum_{j=k..floor((n-k-l)/3)} Sum_{i=j..floor((n-j-k-l)/2)} l * (l mod 2). %F A309830 a(n) = a(n-1) + 2*a(n-2) - a(n-3) - 2*a(n-4) - a(n-5) + 2*a(n-6) + a(n-7) - a(n-8) + 2*a(n-10) - 2*a(n-11) - 4*a(n-12) + 2*a(n-13) + 4*a(n-14) + 2*a(n-15) - 4*a(n-16) - 2*a(n-17) + 2*a(n-18) - a(n-20) + a(n-21) + 2*a(n-22) - a(n-23) - 2*a(n-24) - a(n-25) + 2*a(n-26) + a(n-27) - a(n-28) for n > 27. %e A309830 Figure 1: The partitions of n into 5 parts for n = 5, 6, ... %e A309830 1+1+1+1+5 %e A309830 1+1+1+2+4 %e A309830 1+1+1+1+4 1+1+1+3+3 %e A309830 1+1+1+1+3 1+1+1+2+3 1+1+2+2+3 %e A309830 1+1+1+1+1 1+1+1+1+2 1+1+1+2+2 1+1+2+2+2 1+2+2+2+2 %e A309830 ----------------------------------------------------------------------- %e A309830 n | 5 6 7 8 9 ... %e A309830 ----------------------------------------------------------------------- %e A309830 a(n) | 1 1 2 3 5 ... %e A309830 ----------------------------------------------------------------------- %t A309830 LinearRecurrence[{1, 2, -1, -2, -1, 2, 1, -1, 0, 2, -2, -4, 2, 4, %t A309830 2, -4, -2, 2, 0, -1, 1, 2, -1, -2, -1, 2, 1, -1}, {0, 0, 0, 0, 0, 1, %t A309830 1, 2, 3, 5, 6, 9, 11, 15, 18, 26, 30, 40, 48, 62, 72, 91, 105, 129, %t A309830 148, 182, 206, 248}, 50] %Y A309830 Cf. A309787, A309831, A309834. %K A309830 nonn %O A309830 0,8 %A A309830 _Wesley Ivan Hurt_, Aug 19 2019