cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309831 Number of even parts appearing among the smallest parts of the partitions of n into 5 parts.

This page as a plain text file.
%I A309831 #35 Oct 10 2019 08:16:38
%S A309831 0,0,0,0,0,0,0,0,0,0,1,1,2,3,5,6,9,11,15,18,24,28,36,42,52,60,73,83,
%T A309831 99,112,132,148,172,192,221,245,279,308,348,382,429,469,523,570,632,
%U A309831 686,757,819,899,970,1061,1141,1243,1334,1448,1550,1677,1791,1932
%N A309831 Number of even parts appearing among the smallest parts of the partitions of n into 5 parts.
%H A309831 Colin Barker, <a href="/A309831/b309831.txt">Table of n, a(n) for n = 0..1000</a>
%H A309831 <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%H A309831 <a href="/index/Rec#order_20">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,0,0,-2,0,0,1,1,0,-1,-1,0,0,2,0,0,-1,-1,1).
%F A309831 a(n) = Sum_{l=1..floor(n/5)} Sum_{k=l..floor((n-l)/4)} Sum_{j=k..floor((n-k-l)/3)} Sum_{i=j..floor((n-j-k-l)/2)} ((l-1) mod 2).
%F A309831 From _Colin Barker_, Aug 19 2019: (Start)
%F A309831 G.f.: x^10 / ((1 - x)^5*(1 + x)^3*(1 + x^2)*(1 + x + x^2)*(1 - x + x^2 - x^3 + x^4)*(1 + x + x^2 + x^3 + x^4)).
%F A309831 a(n) = a(n-1) + a(n-2) - 2*a(n-5) + a(n-8) + a(n-9) - a(n-11) - a(n-12) + 2*a(n-15) - a(n-18) - a(n-19) + a(n-20) for n>19.
%F A309831 (End) [Recurrence verified by _Wesley Ivan Hurt_, Aug 24 2019]
%e A309831 Figure 1: The partitions of n into 5 parts for n = 10, 11, ..
%e A309831                                                        1+1+1+1+10
%e A309831                                                         1+1+1+2+9
%e A309831                                                         1+1+1+3+8
%e A309831                                                         1+1+1+4+7
%e A309831                                                         1+1+1+5+6
%e A309831                                             1+1+1+1+9   1+1+2+2+8
%e A309831                                             1+1+1+2+8   1+1+2+3+7
%e A309831                                             1+1+1+3+7   1+1+2+4+6
%e A309831                                             1+1+1+4+6   1+1+2+5+5
%e A309831                                             1+1+1+5+5   1+1+3+3+6
%e A309831                                 1+1+1+1+8   1+1+2+2+7   1+1+3+4+5
%e A309831                                 1+1+1+2+7   1+1+2+3+6   1+1+4+4+4
%e A309831                                 1+1+1+3+6   1+1+2+4+5   1+2+2+2+7
%e A309831                     1+1+1+1+7   1+1+1+4+5   1+1+3+3+5   1+2+2+3+6
%e A309831                     1+1+1+2+6   1+1+2+2+6   1+1+3+4+4   1+2+2+4+5
%e A309831                     1+1+1+3+5   1+1+2+3+5   1+2+2+2+6   1+2+3+3+5
%e A309831         1+1+1+1+6   1+1+1+4+4   1+1+2+4+4   1+2+2+3+5   1+2+3+4+4
%e A309831         1+1+1+2+5   1+1+2+2+5   1+1+3+3+4   1+2+2+4+4   1+3+3+3+4
%e A309831         1+1+1+3+4   1+1+2+3+4   1+2+2+2+5   1+2+3+3+4   2+2+2+2+6
%e A309831         1+1+2+2+4   1+1+3+3+3   1+2+2+3+4   1+3+3+3+3   2+2+2+3+5
%e A309831         1+1+2+3+3   1+2+2+2+4   1+2+3+3+3   2+2+2+2+5   2+2+2+4+4
%e A309831         1+2+2+2+3   1+2+2+3+3   2+2+2+2+4   2+2+2+3+4   2+2+3+3+4
%e A309831         2+2+2+2+2   2+2+2+2+3   2+2+2+3+3   2+2+3+3+3   2+3+3+3+3
%e A309831 --------------------------------------------------------------------------
%e A309831   n  |     10          11          12          13          14        ...
%e A309831 --------------------------------------------------------------------------
%e A309831 a(n) |      1           1           2           3           5        ...
%e A309831 --------------------------------------------------------------------------
%t A309831 LinearRecurrence[{1, 1, 0, 0, -2, 0, 0, 1, 1, 0, -1, -1, 0, 0, 2, 0,
%t A309831   0, -1, -1, 1}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 6, 9,
%t A309831   11, 15, 18}, 50]
%o A309831 (PARI) concat([0,0,0,0,0,0,0,0,0,0], Vec(x^10 / ((1 - x)^5*(1 + x)^3*(1 + x^2)*(1 + x + x^2)*(1 - x + x^2 - x^3 + x^4)*(1 + x + x^2 + x^3 + x^4)) + O(x^80))) \\ _Colin Barker_, Oct 10 2019
%Y A309831 Cf. A309787, A309830, A309834.
%K A309831 nonn,easy
%O A309831 0,13
%A A309831 _Wesley Ivan Hurt_, Aug 19 2019