cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309834 Sum of the even parts appearing among the smallest parts of the partitions of n into 5 parts.

This page as a plain text file.
%I A309834 #21 Nov 07 2019 08:13:22
%S A309834 0,0,0,0,0,0,0,0,0,0,2,2,4,6,10,12,18,22,30,36,50,58,76,90,114,132,
%T A309834 164,188,228,260,314,354,420,474,556,622,722,804,924,1024,1172,1292,
%U A309834 1466,1614,1820,1994,2236,2442,2722,2964,3294,3574,3952,4282,4716,5094
%N A309834 Sum of the even parts appearing among the smallest parts of the partitions of n into 5 parts.
%H A309834 <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%H A309834 <a href="/index/Rec#order_30">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,0,0,-2,0,0,1,1,1,-2,-2,0,0,4,0,0,-2,-2,1,1,1,0,0,-2,0,0,1,1,-1).
%F A309834 a(n) = Sum_{l=1..floor(n/5)} Sum_{k=l..floor((n-l)/4)} Sum_{j=k..floor((n-k-l)/3)} Sum_{i=j..floor((n-j-k-l)/2)} l * ((l-1) mod 2).
%F A309834 a(n) = a(n-1) + a(n-2) - 2*a(n-5) + a(n-8) + a(n-9) + a(n-10) - 2*a(n-11) - 2*a(n-12) + 4*a(n-15) - 2*a(n-18) - 2*a(n-19) + a(n-20) + a(n-21) + a(n-22) - 2*a(n-25) + a(n-28) + a(n-29) - a(n-30) for n > 29.
%e A309834 Figure 1: The partitions of n into 5 parts for n = 10, 11, ..
%e A309834                                                        1+1+1+1+10
%e A309834                                                         1+1+1+2+9
%e A309834                                                         1+1+1+3+8
%e A309834                                                         1+1+1+4+7
%e A309834                                                         1+1+1+5+6
%e A309834                                             1+1+1+1+9   1+1+2+2+8
%e A309834                                             1+1+1+2+8   1+1+2+3+7
%e A309834                                             1+1+1+3+7   1+1+2+4+6
%e A309834                                             1+1+1+4+6   1+1+2+5+5
%e A309834                                             1+1+1+5+5   1+1+3+3+6
%e A309834                                 1+1+1+1+8   1+1+2+2+7   1+1+3+4+5
%e A309834                                 1+1+1+2+7   1+1+2+3+6   1+1+4+4+4
%e A309834                                 1+1+1+3+6   1+1+2+4+5   1+2+2+2+7
%e A309834                     1+1+1+1+7   1+1+1+4+5   1+1+3+3+5   1+2+2+3+6
%e A309834                     1+1+1+2+6   1+1+2+2+6   1+1+3+4+4   1+2+2+4+5
%e A309834                     1+1+1+3+5   1+1+2+3+5   1+2+2+2+6   1+2+3+3+5
%e A309834         1+1+1+1+6   1+1+1+4+4   1+1+2+4+4   1+2+2+3+5   1+2+3+4+4
%e A309834         1+1+1+2+5   1+1+2+2+5   1+1+3+3+4   1+2+2+4+4   1+3+3+3+4
%e A309834         1+1+1+3+4   1+1+2+3+4   1+2+2+2+5   1+2+3+3+4   2+2+2+2+6
%e A309834         1+1+2+2+4   1+1+3+3+3   1+2+2+3+4   1+3+3+3+3   2+2+2+3+5
%e A309834         1+1+2+3+3   1+2+2+2+4   1+2+3+3+3   2+2+2+2+5   2+2+2+4+4
%e A309834         1+2+2+2+3   1+2+2+3+3   2+2+2+2+4   2+2+2+3+4   2+2+3+3+4
%e A309834         2+2+2+2+2   2+2+2+2+3   2+2+2+3+3   2+2+3+3+3   2+3+3+3+3
%e A309834 --------------------------------------------------------------------------
%e A309834   n  |     10          11          12          13          14        ...
%e A309834 --------------------------------------------------------------------------
%e A309834 a(n) |      2           2           4           6          10        ...
%e A309834 --------------------------------------------------------------------------
%t A309834 LinearRecurrence[{1, 1, 0, 0, -2, 0, 0, 1, 1, 1, -2, -2, 0, 0, 4, 0,
%t A309834   0, -2, -2, 1, 1, 1, 0, 0, -2, 0, 0, 1, 1, -1}, {0, 0, 0, 0, 0, 0, 0,
%t A309834    0, 0, 0, 2, 2, 4, 6, 10, 12, 18, 22, 30, 36, 50, 58, 76, 90, 114,
%t A309834   132, 164, 188, 228, 260}, 50]
%Y A309834 Cf. A309787, A309830, A309831.
%K A309834 nonn,easy
%O A309834 0,11
%A A309834 _Wesley Ivan Hurt_, Aug 19 2019