A309846 Number of degree n polynomials f with all nonzero coefficients equal to 1 such that f(k) is divisible by 4 for all integers k.
0, 0, 0, 0, 1, 2, 6, 10, 20, 32, 64, 120, 256, 512, 1056, 2080, 4160, 8192, 16384, 32640, 65536, 131072, 262656, 524800, 1049600, 2097152, 4194304, 8386560, 16777216, 33554432, 67117056, 134225920, 268451840, 536870912, 1073741824, 2147450880, 4294967296, 8589934592, 17180000256, 34359869440
Offset: 1
Keywords
Examples
For n = 7, the a(7) = 6 (0,1)-polynomials of degree seven such that f(0) == f(1) == f(2) == f(3) == 0 (mod 3) are x^7 + x^6 + x^5 + x^4, x^7 + x^6 + x^4 + x^3, x^7 + x^6 + x^5 + x^2, x^7 + x^5 + x^4 + x^2, x^7 + x^6 + x^3 + x^2, and x^7 + x^4 + x^3 + x^2.
Links
- Robert Israel, Table of n, a(n) for n = 1..1000
- Robert Israel, Proofs of formulas
Programs
-
Maple
f:= proc(n) local k, r; if n <= 4 then return 0 fi; r:= n mod 8; k:= (n-r)/8; if r = 0 then 16^k/8 + 256^k/32 elif r = 1 then 16^k/4 + 256^k/16 elif r = 2 then 256^k/8 elif r = 3 then 256^k/4 elif r = 4 then -16^k/2 + 256^k/2 elif r = 5 then 256^k elif r = 6 then 2 * 256^k else 2 * 16^k + 4 * 256^k fi end proc: map(f, [$1..50]); # Robert Israel, Oct 29 2023
Formula
From Robert Israel, Oct 29 2023: (Start)
a(8 k) = 16^k/8 + 256^k/32 for k >= 1.
a(8 k + 1) = 16^k/4 + 256^k/16 for k >= 1.
a(8 k + 2) = 256^k/8 for k >= 1.
a(8 k + 3) = 256^k/4 for k >= 1.
a(8 k + 4) = -16^k/2 + 256^k/2.
a(8 k + 5) = 256^k.
a(8 k + 6) = 2 * 256^k.
a(8 k + 7) = 2 * 16^k + 4 * 256^k.
G.f.: x^5 * (1 - 2*x + 2*x^2 - 2*x^3)/((1 - 2*x) * (1 - 2*x^2) * (1 - 2*x + 2*x^2)). (End)
Extensions
More terms from Robert Israel, Oct 29 2023
Comments