cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309852 Array read by antidiagonals: ((z+sqrt(x))/2)^k + ((z-sqrt(x))/2)^k for columns k >= 0 and rows n >= 0, where x = 4*n+1 and y = floor(sqrt(x)) and z = y-1+(y mod 2).

This page as a plain text file.
%I A309852 #31 Mar 17 2025 04:59:45
%S A309852 2,1,2,1,1,2,1,3,3,2,1,4,9,3,2,1,7,27,11,3,2,1,11,81,36,13,3,2,1,18,
%T A309852 243,119,45,15,5,2,1,29,729,393,161,54,25,5,2,1,47,2187,1298,573,207,
%U A309852 125,27,5,2,1,76,6561,4287,2041,783,625,140,29,5,2
%N A309852 Array read by antidiagonals: ((z+sqrt(x))/2)^k + ((z-sqrt(x))/2)^k for columns k >= 0 and rows n >= 0, where x = 4*n+1 and y = floor(sqrt(x)) and z = y-1+(y mod 2).
%C A309852 One of 4 related arrays (the others being A191347, A191348, and A309853) where the two halves of the main formula approach the integers shown and 0 respectively, and also with A309853 where rows represent various Fibonacci series a(n) = a(n-2)*b + a(n-1)*c where b and c are integers >= 0.
%F A309852 For each row n>=0 let x = 4*n+1, y = floor(sqrt(x)), T(n,0)=2, and T(n,1)=y-1+(y % 2), then for each column k>=2: T(n, k-2)*((x-T(n, 1)^2)/4) + T(n, k-1)*T(n, 1). - _Charles L. Hohn_, Aug 23 2019
%e A309852 Array begins:
%e A309852   2, 1,  1,   1,    1,    1,     1,      1,       1,       1,        1, ...
%e A309852   2, 1,  3,   4,    7,   11,    18,     29,      47,      76,      123, ...
%e A309852   2, 3,  9,  27,   81,  243,   729,   2187,    6561,   19683,    59049, ...
%e A309852   2, 3, 11,  36,  119,  393,  1298,   4287,   14159,   46764,   154451, ...
%e A309852   2, 3, 13,  45,  161,  573,  2041,   7269,   25889,   92205,   328393, ...
%e A309852   2, 3, 15,  54,  207,  783,  2970,  11259,   42687,  161838,   613575, ...
%e A309852   2, 5, 25, 125,  625, 3125, 15625,  78125,  390625, 1953125,  9765625, ...
%e A309852   2, 5, 27, 140,  727, 3775, 19602, 101785,  528527, 2744420, 14250627, ...
%e A309852   2, 5, 29, 155,  833, 4475, 24041, 129155,  693857, 3727595, 20025689, ...
%e A309852   2, 5, 31, 170,  943, 5225, 28954, 160445,  889087, 4926770, 27301111, ...
%e A309852   2, 5, 33, 185, 1057, 6025, 34353, 195865, 1116737, 6367145, 36302673, ...
%e A309852   ...
%o A309852 (PARI) T(n, k) = my(x = 4*n+1, y = sqrtint(x), z = y-1+(y % 2)); round(((z+sqrt(x))/2)^k + ((z-sqrt(x))/2)^k);
%o A309852 matrix(9,9, n, k, T(n-1,k-1)) \\ _Michel Marcus_, Aug 22 2019
%o A309852 (PARI) T(n, k) = my(x = 4*n+1, y = sqrtint(x), z=y-1+(y % 2)); v=if(k==0, 2, k==1, z, mapget(m2, n)*((x-z^2)/4) + mapget(m1, n)*z); mapput(m2, n, if(mapisdefined(m1, n), mapget(m1, n), 0)); mapput(m1, n, v); v;
%o A309852 m1=Map(); m2=Map(); matrix(9, 9, n, k, T(n-1, k-1)) \\ _Charles L. Hohn_, Aug 26 2019
%Y A309852 Row 2 is A000032, row 3 (except the first term) is A000244, row 4 is A006497, row 5 is A206776, row 6 is A172012, row 7 (except the first term) is A000351, row 8 is A087130.
%Y A309852 Cf. A191347, A191348, and A309853.
%K A309852 nonn,tabl
%O A309852 0,1
%A A309852 _Charles L. Hohn_, Aug 20 2019