This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309876 #22 Oct 05 2019 21:06:43 %S A309876 1,1,1,1,2,1,1,3,3,1,1,4,10,4,1,1,5,33,33,5,1,1,6,155,2135,155,6,1,1, %T A309876 7,1043,7013319,7013319,1043,7,1,1,8,12345,1788782616655, %U A309876 29281354514767167,1788782616655,12345,8,1 %N A309876 Number T(n,k) of k-uniform hypergraphs on n unlabeled nodes with at least one (possibly empty) hyperedge; triangle T(n,k), n>=0, 0<=k<=n, read by rows. %C A309876 A hypergraph is called k-uniform if all hyperedges have the same cardinality k. %C A309876 T(n,k) is defined for n,k >= 0. The triangle contains only the terms with k<=n. T(n,k) = 0 for k>n. %H A309876 Alois P. Heinz, <a href="/A309876/b309876.txt">Rows n = 0..14, flattened</a> %H A309876 Jianguo Qian, <a href="https://doi.org/10.1016/j.disc.2014.03.005">Enumeration of unlabeled uniform hypergraphs</a>, Discrete Math. 326 (2014), 66--74. MR3188989. %H A309876 Wikipedia, <a href="https://en.wikipedia.org/wiki/Hypergraph">Hypergraph</a> %F A309876 T(n,k) = A309865(n,k) - 1 = A309858(n,k) - 1. %F A309876 T(n,k) = T(n,n-k) for 0 <= k <= n. %e A309876 T(3,0) = 1: {{}}. %e A309876 T(3,1) = 3: {1}, {1,2}, {1,2,3}. %e A309876 T(3,2) = 3: {12}, {12,13}, {12,13,23}. %e A309876 T(3,3) = 1: {123}. %e A309876 (Non-isomorphic representatives of the hypergraphs are given.) %e A309876 Triangle T(n,k) begins: %e A309876 1; %e A309876 1, 1; %e A309876 1, 2, 1; %e A309876 1, 3, 3, 1; %e A309876 1, 4, 10, 4, 1; %e A309876 1, 5, 33, 33, 5, 1; %e A309876 1, 6, 155, 2135, 155, 6, 1; %e A309876 1, 7, 1043, 7013319, 7013319, 1043, 7, 1; %e A309876 ... %p A309876 g:= (l, i, n)-> `if`(i=0, `if`(n=0, [[]], []), [seq(map(x-> %p A309876 [x[], j], g(l, i-1, n-j))[], j=0..min(l[i], n))]): %p A309876 h:= (p, v)-> (q-> add((s-> add(`if`(andmap(i-> irem(k[i], p[i] %p A309876 /igcd(t, p[i]))=0, [$1..q]), mul((m-> binomial(m, k[i]*m %p A309876 /p[i]))(igcd(t, p[i])), i=1..q), 0), t=1..s)/s)(ilcm(seq( %p A309876 `if`(k[i]=0, 1, p[i]), i=1..q))), k=g(p, q, v)))(nops(p)): %p A309876 b:= (n, i, l, v)-> `if`(n=0 or i=1, 2^((p-> h(p, v))([l[], 1$n])) %p A309876 /n!, add(b(n-i*j, i-1, [l[], i$j], v)/j!/i^j, j=0..n/i)): %p A309876 T:= proc(n, k) option remember; `if`(k>n-k, %p A309876 T(n, n-k), b(n$2, [], k)-1) %p A309876 end: %p A309876 seq(seq(T(n, k), k=0..n), n=0..9); %Y A309876 Columns k=0-1 give: A000012, A001477. %Y A309876 Row sums give A309868. %Y A309876 T(2n,n) gives A328157. %Y A309876 Cf. A309858, A309865. %K A309876 nonn,tabl %O A309876 0,5 %A A309876 _Peter Dolland_ and _Alois P. Heinz_, Aug 21 2019