cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309897 Number of not unique partition coefficients of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 6, 9, 13, 22, 33, 51, 74, 104, 142, 194, 261, 351, 464, 616, 802, 1047, 1344, 1716, 2186, 2766, 3473, 4367, 5448, 6774, 8375, 10329, 12685, 15553, 18982, 23098, 28046, 33966, 40976, 49381, 59301, 71095, 85017, 101491, 120859
Offset: 0

Views

Author

Peter Luschny, Sep 06 2019

Keywords

Comments

We call (p1+p2+ ...)! / (p1!*p2!*p3! ...) a 'partition coefficient' of n if (p1, p2, p3, ...) is a partition, n = p1 + p2 + ... and denote it by P(n, p).

Examples

			a(7) = 1 because the partition coefficients of 7 are [1, 7, 21, 42, 35, 105, 210, 140, 210, 420, 840, 630, 1260, 2520, 5040], P(7, [3, 2, 2]) = P(7, [4, 1, 1, 1]) = 210 and all other partition coefficients are unique.
We say that two partitions of n are multinomial-equivalent if they have the same partition coefficient. For instance [6, 2, 2, 1, 1] ~ [5, 4, 1, 1, 1] ~ [5, 3, 2, 2] and [6, 4, 1, 1, 1, 1, 1] ~ [6, 3, 2, 2, 1, 1] ~ [5, 4, 3, 1, 1, 1] ~ [5, 3, 3, 2, 2].
		

Crossrefs

Programs

  • Maple
    h := proc(n,k) option remember;
    if n = 0 then return [1] elif k < 1 then return [] fi;
    [h(n, k-1)[], seq(map(x -> x*k!^j, h(n-k*j, k-1))[], j=1..n/k)] end:
    A309897 := proc(n) h(n, n); nops(%) - nops(convert(%, set)) end:
    seq(A309897(n), n=0..48);
  • SageMath
    def A309897(n):
        P = Partitions(n)
        M = set(multinomial(x) for x in P)
        return P.cardinality() - len(M)
    [A309897(n) for n in range(29)]

Formula

a(n) = A000041(n) - A070289(n).