A309897 Number of not unique partition coefficients of n.
0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 6, 9, 13, 22, 33, 51, 74, 104, 142, 194, 261, 351, 464, 616, 802, 1047, 1344, 1716, 2186, 2766, 3473, 4367, 5448, 6774, 8375, 10329, 12685, 15553, 18982, 23098, 28046, 33966, 40976, 49381, 59301, 71095, 85017, 101491, 120859
Offset: 0
Keywords
Examples
a(7) = 1 because the partition coefficients of 7 are [1, 7, 21, 42, 35, 105, 210, 140, 210, 420, 840, 630, 1260, 2520, 5040], P(7, [3, 2, 2]) = P(7, [4, 1, 1, 1]) = 210 and all other partition coefficients are unique. We say that two partitions of n are multinomial-equivalent if they have the same partition coefficient. For instance [6, 2, 2, 1, 1] ~ [5, 4, 1, 1, 1] ~ [5, 3, 2, 2] and [6, 4, 1, 1, 1, 1, 1] ~ [6, 3, 2, 2, 1, 1] ~ [5, 4, 3, 1, 1, 1] ~ [5, 3, 3, 2, 2].
Programs
-
Maple
h := proc(n,k) option remember; if n = 0 then return [1] elif k < 1 then return [] fi; [h(n, k-1)[], seq(map(x -> x*k!^j, h(n-k*j, k-1))[], j=1..n/k)] end: A309897 := proc(n) h(n, n); nops(%) - nops(convert(%, set)) end: seq(A309897(n), n=0..48);
-
SageMath
def A309897(n): P = Partitions(n) M = set(multinomial(x) for x in P) return P.cardinality() - len(M) [A309897(n) for n in range(29)]
Comments