This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309936 #35 Jan 11 2021 17:00:30 %S A309936 0,1,0,1,1,1,0,1,2,3,1,1,0,1,3,7,6,4,1,1,0,1,4,13,17,17,8,4,1,1,0,1,6, %T A309936 25,44,56,41,24,9,4,1,1,0,1,7,40,101,164,158,117,57,26,9,4,1,1,0,1,9, %U A309936 65,216,450,562,503,315,162,64,27,9,4,1,1 %N A309936 Irregular triangle read by rows: T(n,k) is the number of unlabeled loopless multigraphs with n edges covering k vertices, n >= 1, 1 <= k <= 2*n. %C A309936 Covering k vertices means there are no vertices of degree zero. %H A309936 Andrew Howroyd, <a href="/A309936/b309936.txt">Table of n, a(n) for n = 1..650</a> (rows 1..25) %F A309936 T(n,k) = A192517(k,n) - A192517(k-1,n) for k > 1. %e A309936 Triangle begins: %e A309936 0, 1; %e A309936 0, 1, 1, 1; %e A309936 0, 1, 2, 3, 1, 1; %e A309936 0, 1, 3, 7, 6, 4, 1, 1; %e A309936 0, 1, 4, 13, 17, 17, 8, 4, 1, 1; %e A309936 0, 1, 6, 25, 44, 56, 41, 24, 9, 4, 1, 1; %e A309936 0, 1, 7, 40, 101, 164, 158, 117, 57, 26, 9, 4, 1, 1; %e A309936 ... %o A309936 (PARI) %o A309936 permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} %o A309936 edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2)*if(c%2, 1, t(c/2)))} %o A309936 C(n,m)={my(s=O(x*x^m)); forpart(p=n, s+=permcount(p)/edges(p, i->1-x^i+O(x*x^m))); Col(s/n!)} %o A309936 T(m) = {my(n=2*m, A=Mat(vector(n+1, n, C(n-1,m)))); A[2..m+1, 2..n+1]-A[2..m+1, 1..n]} %o A309936 { my(A=T(8)); for(n=1, matsize(A)[1], print(A[n, 1..2*n])) } %Y A309936 Row sums are A050535. %Y A309936 Columns k=3..4 are A253186, A328652. %Y A309936 Cf. A191646, A192517, A327615. %K A309936 nonn,tabf %O A309936 1,9 %A A309936 _Andrew Howroyd_, Oct 23 2019