cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309946 a(n) = floor(Pi^n/Zeta(n)).

This page as a plain text file.
%I A309946 #24 Aug 24 2019 22:19:58
%S A309946 0,6,25,90,295,945,2995,9450,29749,93555,294058,924041,2903320,
%T A309946 9121612,28657269,90030844,282842403,888579011,2791558622,8769948429,
%U A309946 27551618702,86555983552,271923674474,854273468992,2683779334331,8431341566236,26487840921750,83214006759229,261424512797515
%N A309946 a(n) = floor(Pi^n/Zeta(n)).
%H A309946 <a href="/index/Z#zeta_function">Index entries for zeta function</a>.
%F A309946 a(2*n) = A100594(n).
%e A309946 Pi^12/Zeta(12) = 638512875/691 = 924041.78... So a(12) = 924041.
%t A309946 Table[Floor[Pi^n/Zeta[n]], {n, 20}] (* _Alonso del Arte_, Aug 24 2019 *)
%o A309946 (PARI) {a(n) = if(n==1, 0, n==4, 90, floor(Pi^n/zeta(n)))}
%Y A309946 Decimal expansion of Pi^k/Zeta(k): A308637 (k = 3), A309926 (k = 5), A309927 (k = 7), A309928 (k = 9), A309929 (k = 11).
%Y A309946 Cf. A001672 (floor(Pi^n)), A002432, A046988, A100594.
%K A309946 nonn
%O A309946 1,2
%A A309946 _Seiichi Manyama_, Aug 24 2019