cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309967 a(1) = a(2) = 1, a(3) = 2, a(4) = 3, a(5) = 8, a(6) = 6, a(7) = a(8) = 4; a(n) = a(n-a(n-1)) + a(n-a(n-4)) for n > 8.

Original entry on oeis.org

1, 1, 2, 3, 8, 6, 4, 4, 9, 4, 8, 7, 9, 12, 6, 13, 7, 14, 17, 6, 18, 7, 19, 22, 6, 23, 7, 24, 27, 6, 28, 7, 29, 32, 6, 33, 7, 34, 37, 6, 38, 7, 39, 42, 6, 43, 7, 44, 47, 6, 48, 7, 49, 52, 6, 53, 7, 54, 57, 6, 58, 7, 59, 62, 6, 63, 7, 64, 67, 6, 68, 7, 69, 72, 6, 73, 7, 74, 77, 6, 78, 7
Offset: 1

Views

Author

Altug Alkan, Aug 25 2019

Keywords

Comments

A quasilinear solution sequence for Hofstadter V recurrence (a(n) = a(n-a(n-1)) + a(n-a(n-4))).

Crossrefs

Programs

  • PARI
    q=vector(100); q[1]=q[2]=1; q[3]=2; q[4]=3; q[5]=8; q[6]=6; q[7]=q[8]=4; for(n=9, #q, q[n]=q[n-q[n-1]]+q[n-q[n-4]]); q
    
  • PARI
    Vec(x*(1 + x + 2*x^2 + 3*x^3 + 8*x^4 + 4*x^5 + 2*x^6 + 3*x^8 - 12*x^9 - 3*x^10 +  3*x^12 - 3*x^13 + 6*x^14 + 3*x^15 - 3*x^16 + 2*x^18 - 2*x^19) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4)^2) + O(x^40)) \\ Colin Barker, Aug 25 2019

Formula

For k > 2:
a(5*k-4) = 5*k-7,
a(5*k-3) = 7,
a(5*k-2) = 5*k-6,
a(5*k-1) = 5*k-3,
a(5*k) = 6.
From Colin Barker, Aug 25 2019: (Start)
G.f.: x*(1 + x + 2*x^2 + 3*x^3 + 8*x^4 + 4*x^5 + 2*x^6 + 3*x^8 - 12*x^9 - 3*x^10 + 3*x^12 - 3*x^13 + 6*x^14 + 3*x^15 - 3*x^16 + 2*x^18 - 2*x^19) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4)^2).
a(n) = 2*a(n-5) - a(n-10) for n > 20.
(End)