cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309996 Number of forests of rooted identity trees with 2n colored nodes using exactly n colors.

This page as a plain text file.
%I A309996 #10 Sep 15 2022 04:02:18
%S A309996 1,1,60,10746,4191916,2894100710,3128432924009,4887094401176148,
%T A309996 10429904418286375276,29174096160751011237987,
%U A309996 103602945849963939278211780,455474137757927866858846385930,2428879210633773939611859814825540,15447942216555014401018067561180236424
%N A309996 Number of forests of rooted identity trees with 2n colored nodes using exactly n colors.
%H A309996 Alois P. Heinz, <a href="/A309996/b309996.txt">Table of n, a(n) for n = 0..188</a>
%F A309996 a(n) = A256068(2n+1,n).
%p A309996 b:= proc(n, k) option remember; `if`(n<2, n, add(b(n-j, k)*add(b(d, k)
%p A309996       *k*d*(-1)^(j/d+1), d=numtheory[divisors](j)), j=1..n-1)/(n-1))
%p A309996     end:
%p A309996 a:= n-> add(b(2*n+1, n-i)*(-1)^i*binomial(n, i), i=0..n):
%p A309996 seq(a(n), n=0..15);
%t A309996 b[n_, k_] := b[n, k] = If[n < 2, n, Sum[b[n - j, k]*Sum[b[d, k]*k*d*(-1)^(j/d+1), {d, Divisors[j]}], {j, 1, n-1}]/(n-1)];
%t A309996 a[n_] := Sum[b[2*n+1, n-i]*(-1)^i*Binomial[n, i], {i, 0, n}];
%t A309996 Table[a[n], {n, 0, 15}] (* _Jean-François Alcover_, Sep 15 2022, after _Alois P. Heinz_ *)
%Y A309996 Cf. A256068.
%K A309996 nonn
%O A309996 0,3
%A A309996 _Alois P. Heinz_, Aug 26 2019