This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309996 #10 Sep 15 2022 04:02:18 %S A309996 1,1,60,10746,4191916,2894100710,3128432924009,4887094401176148, %T A309996 10429904418286375276,29174096160751011237987, %U A309996 103602945849963939278211780,455474137757927866858846385930,2428879210633773939611859814825540,15447942216555014401018067561180236424 %N A309996 Number of forests of rooted identity trees with 2n colored nodes using exactly n colors. %H A309996 Alois P. Heinz, <a href="/A309996/b309996.txt">Table of n, a(n) for n = 0..188</a> %F A309996 a(n) = A256068(2n+1,n). %p A309996 b:= proc(n, k) option remember; `if`(n<2, n, add(b(n-j, k)*add(b(d, k) %p A309996 *k*d*(-1)^(j/d+1), d=numtheory[divisors](j)), j=1..n-1)/(n-1)) %p A309996 end: %p A309996 a:= n-> add(b(2*n+1, n-i)*(-1)^i*binomial(n, i), i=0..n): %p A309996 seq(a(n), n=0..15); %t A309996 b[n_, k_] := b[n, k] = If[n < 2, n, Sum[b[n - j, k]*Sum[b[d, k]*k*d*(-1)^(j/d+1), {d, Divisors[j]}], {j, 1, n-1}]/(n-1)]; %t A309996 a[n_] := Sum[b[2*n+1, n-i]*(-1)^i*Binomial[n, i], {i, 0, n}]; %t A309996 Table[a[n], {n, 0, 15}] (* _Jean-François Alcover_, Sep 15 2022, after _Alois P. Heinz_ *) %Y A309996 Cf. A256068. %K A309996 nonn %O A309996 0,3 %A A309996 _Alois P. Heinz_, Aug 26 2019