A309997 Number of paths from 2 to n of length A307092(n) - 1 via maps of the form x -> x + x^j, where j is a nonnegative integer.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 2, 2, 2
Offset: 2
Keywords
Examples
For n = 520, the a(520) = 3 sequences of A307092(520)-1 = 3 maps are: 2 -> 2 + 2^1 -> 4 + 4^1 -> 8 + 8^3 = 520 2 -> 2 + 2^1 -> 4 + 4^4 -> 260 + 260^1 = 520 2 -> 2 + 2^7 -> 130 + 130^1 -> 260 + 260^1 = 520 With exponents (1,1,3), (1,4,1), and (7,1,1) respectively.
Links
- Peter Kagey, Table of n, a(n) for n = 2..10000
- Peter Kagey, Count the number of paths to n, Code Golf Stack Exchange.
Comments