This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A316087 #22 Jul 04 2023 14:03:17 %S A316087 1,-1,-3,-2,7,19,8,-53,-119,-18,387,727,-112,-2745,-4315,2238,18991, %T A316087 24715,-24296,-128461,-135023,219502,850635,688239,-1806560,-5515441, %U A316087 -3116403,14022398,34994967,10783939,-104389592,-216919973,-5497639,752295022,1309660627 %N A316087 Expansion of 1/(1 + Sum_{k>=1} k^2 * x^k). %H A316087 Seiichi Manyama, <a href="/A316087/b316087.txt">Table of n, a(n) for n = 0..3000</a> %H A316087 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (2, -4, 1). %F A316087 Convolution inverse of A253909. %F A316087 G.f.: (x-1)^3/(x^3-4*x^2+2*x-1). %F A316087 a(0) = 1; a(n) = -Sum_{k=1..n} k^2 * a(n-k). - _Ilya Gutkovskiy_, Feb 02 2021 %o A316087 (PARI) N=99; x='x+O('x^N); Vec(1/(1+sum(k=1, sqrtint(N), k^2*x^k))) %Y A316087 1/(1+ Sum_{k>=1} k^m * x^k): A163810 (m=1), this sequence (m=2), A316088 (m=3). %Y A316087 Cf. A253909, A316086. %K A316087 sign %O A316087 0,3 %A A316087 _Seiichi Manyama_, Jun 24 2018