cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316088 Expansion of 1/(1 + Sum_{k>=1} k^3 * x^k).

This page as a plain text file.
%I A316088 #15 Feb 02 2021 16:49:19
%S A316088 1,-1,-7,-12,31,193,240,-1105,-5167,-3924,36343,133873,31584,-1131025,
%T A316088 -3343639,1240212,33732367,79895089,-90574128,-970716385,-1800454975,
%U A316088 3954181452,27045519079,37164094177,-145299908928,-730358292769,-653629025575,4869632030004
%N A316088 Expansion of 1/(1 + Sum_{k>=1} k^3 * x^k).
%H A316088 Seiichi Manyama, <a href="/A316088/b316088.txt">Table of n, a(n) for n = 0..2000</a>
%F A316088 G.f.: (x-1)^4/(x^4-3*x^3+10*x^2-3*x+1).
%F A316088 a(0) = 1; a(n) = -Sum_{k=1..n} k^3 * a(n-k). - _Ilya Gutkovskiy_, Feb 02 2021
%o A316088 (PARI) N=99; x='x+O('x^N); Vec((x-1)^4/(x^4-3*x^3+10*x^2-3*x+1))
%Y A316088 1/(1+ Sum_{k>=1} k^m * x^k): A163810 (m=1), A316087 (m=2), this sequence (m=3).
%K A316088 sign
%O A316088 0,3
%A A316088 _Seiichi Manyama_, Jun 24 2018