This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A316101 #18 May 08 2019 00:20:57 %S A316101 0,0,1,0,1,1,0,1,1,1,0,1,1,1,1,0,1,1,1,2,1,0,1,1,1,3,3,1,0,1,1,1,4,6, %T A316101 6,1,0,1,1,1,5,10,16,12,1,0,1,1,1,6,15,32,43,25,1,0,1,1,1,7,21,55,105, %U A316101 120,52,1,0,1,1,1,8,28,86,210,356,339,113,1,0,1,1,1,9,36,126,371,826,1227,985,247,1 %N A316101 Sequence a_k of column k shifts left when Weigh transform is applied k times with a_k(n) = n for n<2; square array A(n,k), n>=0, k>=0, read by antidiagonals. %H A316101 Alois P. Heinz, <a href="/A316101/b316101.txt">Antidiagonals n = 0..140, flattened</a> %H A316101 M. Bernstein and N. J. A. Sloane, <a href="https://arXiv.org/abs/math.CO/0205301">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version] %H A316101 M. Bernstein and N. J. A. Sloane, <a href="/A003633/a003633_1.pdf">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures] %e A316101 Square array A(n,k) begins: %e A316101 0, 0, 0, 0, 0, 0, 0, 0, 0, ... %e A316101 1, 1, 1, 1, 1, 1, 1, 1, 1, ... %e A316101 1, 1, 1, 1, 1, 1, 1, 1, 1, ... %e A316101 1, 1, 1, 1, 1, 1, 1, 1, 1, ... %e A316101 1, 2, 3, 4, 5, 6, 7, 8, 9, ... %e A316101 1, 3, 6, 10, 15, 21, 28, 36, 45, ... %e A316101 1, 6, 16, 32, 55, 86, 126, 176, 237, ... %e A316101 1, 12, 43, 105, 210, 371, 602, 918, 1335, ... %e A316101 1, 25, 120, 356, 826, 1647, 2961, 4936, 7767, ... %p A316101 wtr:= proc(p) local b; b:= proc(n, i) option remember; %p A316101 `if`(n=0, 1, `if`(i<1, 0, add(binomial(p(i), j)* %p A316101 b(n-i*j, i-1), j=0..n/i))) end: j-> b(j$2) %p A316101 end: %p A316101 g:= proc(k) option remember; local b, t; b[0]:= j-> %p A316101 `if`(j<2, j, b[k](j-1)); for t to k do %p A316101 b[t]:= wtr(b[t-1]) od: eval(b[0]) %p A316101 end: %p A316101 A:= (n, k)-> g(k)(n): %p A316101 seq(seq(A(n, d-n), n=0..d), d=0..14); %t A316101 wtr[p_] := Module[{b}, b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[p[i], j]*b[n - i*j, i - 1], {j, 0, n/i}]]]; b[#, #]&]; %t A316101 g[k_] := g[k] = Module[{b, t}, b[0][j_] := If[j < 2, j, b[k][j - 1]]; For[ t = 1, t <= k + 1, t++, b[t] = wtr[b[t - 1]]]; b[0]]; %t A316101 A[n_, k_] := g[k][n]; %t A316101 Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* _Jean-François Alcover_, Jul 10 2018, after _Alois P. Heinz_ *) %Y A316101 Columns k=0-10 give: A057427, A004111, A007561, A316103, A316104, A316105, A316106, A316107, A316108, A316109, A316110. %Y A316101 Rows include (offsets may differ): A000004, A000012, A000027, A000217, A134465. %Y A316101 Main diagonal gives A316102. %Y A316101 Cf. A144042, A316074. %K A316101 nonn,tabl,eigen %O A316101 0,20 %A A316101 _Alois P. Heinz_, Jun 24 2018