cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316101 Sequence a_k of column k shifts left when Weigh transform is applied k times with a_k(n) = n for n<2; square array A(n,k), n>=0, k>=0, read by antidiagonals.

This page as a plain text file.
%I A316101 #18 May 08 2019 00:20:57
%S A316101 0,0,1,0,1,1,0,1,1,1,0,1,1,1,1,0,1,1,1,2,1,0,1,1,1,3,3,1,0,1,1,1,4,6,
%T A316101 6,1,0,1,1,1,5,10,16,12,1,0,1,1,1,6,15,32,43,25,1,0,1,1,1,7,21,55,105,
%U A316101 120,52,1,0,1,1,1,8,28,86,210,356,339,113,1,0,1,1,1,9,36,126,371,826,1227,985,247,1
%N A316101 Sequence a_k of column k shifts left when Weigh transform is applied k times with a_k(n) = n for n<2; square array A(n,k), n>=0, k>=0, read by antidiagonals.
%H A316101 Alois P. Heinz, <a href="/A316101/b316101.txt">Antidiagonals n = 0..140, flattened</a>
%H A316101 M. Bernstein and N. J. A. Sloane, <a href="https://arXiv.org/abs/math.CO/0205301">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
%H A316101 M. Bernstein and N. J. A. Sloane, <a href="/A003633/a003633_1.pdf">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
%e A316101 Square array A(n,k) begins:
%e A316101   0,  0,   0,   0,   0,    0,    0,    0,    0, ...
%e A316101   1,  1,   1,   1,   1,    1,    1,    1,    1, ...
%e A316101   1,  1,   1,   1,   1,    1,    1,    1,    1, ...
%e A316101   1,  1,   1,   1,   1,    1,    1,    1,    1, ...
%e A316101   1,  2,   3,   4,   5,    6,    7,    8,    9, ...
%e A316101   1,  3,   6,  10,  15,   21,   28,   36,   45, ...
%e A316101   1,  6,  16,  32,  55,   86,  126,  176,  237, ...
%e A316101   1, 12,  43, 105, 210,  371,  602,  918, 1335, ...
%e A316101   1, 25, 120, 356, 826, 1647, 2961, 4936, 7767, ...
%p A316101 wtr:= proc(p) local b; b:= proc(n, i) option remember;
%p A316101        `if`(n=0, 1, `if`(i<1, 0, add(binomial(p(i), j)*
%p A316101          b(n-i*j, i-1), j=0..n/i))) end: j-> b(j$2)
%p A316101       end:
%p A316101 g:= proc(k) option remember; local b, t; b[0]:= j->
%p A316101      `if`(j<2, j, b[k](j-1)); for t to k do
%p A316101        b[t]:= wtr(b[t-1]) od: eval(b[0])
%p A316101     end:
%p A316101 A:= (n, k)-> g(k)(n):
%p A316101 seq(seq(A(n, d-n), n=0..d), d=0..14);
%t A316101 wtr[p_] := Module[{b}, b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[p[i], j]*b[n - i*j, i - 1], {j, 0, n/i}]]]; b[#, #]&];
%t A316101 g[k_] := g[k] = Module[{b, t}, b[0][j_] := If[j < 2, j, b[k][j - 1]]; For[ t = 1, t <= k + 1, t++, b[t] = wtr[b[t - 1]]]; b[0]];
%t A316101 A[n_, k_] := g[k][n];
%t A316101 Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* _Jean-François Alcover_, Jul 10 2018, after _Alois P. Heinz_ *)
%Y A316101 Columns k=0-10 give: A057427, A004111, A007561, A316103, A316104, A316105, A316106, A316107, A316108, A316109, A316110.
%Y A316101 Rows include (offsets may differ): A000004, A000012, A000027, A000217, A134465.
%Y A316101 Main diagonal gives A316102.
%Y A316101 Cf. A144042, A316074.
%K A316101 nonn,tabl,eigen
%O A316101 0,20
%A A316101 _Alois P. Heinz_, Jun 24 2018