cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316112 Number of leaves in the free pure symmetric multifunction (with empty expressions allowed) with e-number n.

This page as a plain text file.
%I A316112 #35 May 28 2025 08:54:39
%S A316112 1,1,1,2,1,2,1,2,2,2,1,2,2,2,1,3,2,2,2,1,3,2,2,2,2,1,2,3,2,2,2,2,2,1,
%T A316112 2,3,3,2,2,2,2,2,1,2,3,3,2,2,2,2,2,2,1,2,3,3,2,2,2,2,2,2,1,3,2,3,3,2,
%U A316112 2,2,2,2,2,1,3,2,3,3,2,2,3,2,2,2,2,1,3
%N A316112 Number of leaves in the free pure symmetric multifunction (with empty expressions allowed) with e-number n.
%C A316112 If n = 1 let e(n) be the leaf symbol "o". Given a positive integer n > 1 we construct a unique free pure symmetric multifunction e(n) with one atom by expressing n as a power of a number that is not a perfect power to a product of prime numbers: n = rad(x)^(prime(y_1) * ... * prime(y_k)) where rad = A007916. Then e(n) = e(x)[e(y_1), ..., e(y_k)]. For example, e(21025) = o[o[o]][o] because 21025 = rad(rad(1)^prime(rad(1)^prime(1)))^prime(1).
%F A316112 a(rad(x)^(prime(y_1) * ... * prime(y_k))) = a(x) + a(y_1) + ... + a(y_k) where rad = A007916.
%e A316112 e(21025) = o[o[o]][o] has 4 leaves so a(21025) = 4.
%t A316112 nn=1000;
%t A316112 radQ[n_]:=If[n==1,False,GCD@@FactorInteger[n][[All,2]]==1];
%t A316112 rad[n_]:=rad[n]=If[n==0,1,NestWhile[#+1&,rad[n-1]+1,Not[radQ[#]]&]];
%t A316112 Clear[radPi];Set@@@Array[radPi[rad[#]]==#&,nn];
%t A316112 a[n_]:=If[n==1,1,With[{g=GCD@@FactorInteger[n][[All,2]]},a[radPi[Power[n,1/g]]]+Sum[a[PrimePi[pr[[1]]]]*pr[[2]],{pr,If[g==1,{},FactorInteger[g]]}]]];
%t A316112 Table[a[n],{n,100}]
%Y A316112 Cf. A007916, A052409, A052410, A109129, A277576, A277996, A300626, A316112, A317056, A317658, A317765, A317994.
%K A316112 nonn
%O A316112 1,4
%A A316112 _Gus Wiseman_, Aug 18 2018