A316141 Number of ordered pairs (k, m) with k > 1 and m > 0 such that n - F(k)*L(m) is an odd prime, where F(k) is the k-th Fibonacci number (A000045) and L(m) is the m-th Lucas number (A000204).
0, 0, 0, 1, 1, 3, 2, 4, 3, 4, 4, 4, 4, 6, 5, 6, 4, 6, 6, 7, 6, 6, 5, 7, 9, 8, 7, 6, 5, 4, 8, 9, 5, 8, 7, 5, 9, 8, 8, 9, 7, 7, 8, 10, 8, 9, 6, 6, 9, 10, 8, 11, 6, 6, 10, 7, 6, 11, 8, 7, 11, 11, 9, 9, 11, 9, 9, 10, 8, 9, 8, 8, 9, 12, 11, 11, 8, 7, 10, 9, 10, 11, 8, 7, 9, 10, 10, 8, 8, 6
Offset: 1
Keywords
Examples
a(4) = 1 with 4 - F(2)*L(1) = 4 - 1*1 = 3 an odd prime. a(5) = 1 with 5 - F(3)*L(1) = 5 - 2*1 = 3 an odd prime. a(7) = 2 with 7 - F(3)*L(1) = 7 - 2*1 = 5 and 7 - F(2)*L(3) = 7 - 1*4 = 3 odd primes.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..100000
- Zhi-Wei Sun, Conjectures on representations involving primes, in: M. Nathanson (ed.), Combinatorial and Additive Number Theory II, Springer Proc. in Math. & Stat., Vol. 220, Springer, Cham, 2017, pp. 279-310. (See also arXiv:1211.1588 [math.NT], 2012-2017.)
Programs
-
Mathematica
F[n_]:=F[n]=Fibonacci[n]; L[n_]:=L[n]=LucasL[n]; PQ[n_]:=PQ[n]=n>2&&PrimeQ[n]; tab={};Do[r=0;k=2;Label[aa];If[F[k]>=n,Goto[cc]];m=1;Label[bb];If[L[m]>=n/F[k],k=k+1;Goto[aa]];If[PQ[n-F[k]L[m]],r=r+1];m=m+1;Goto[bb];Label[cc];tab=Append[tab,r],{n,1,90}];Print[tab]
Comments