cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316148 Number of non-congruent solutions of x^2+y^2 == z^2+w^2 (mod n).

Original entry on oeis.org

1, 8, 33, 96, 145, 264, 385, 896, 945, 1160, 1441, 3168, 2353, 3080, 4785, 7680, 5185, 7560, 7201, 13920, 12705, 11528, 12673, 29568, 18625, 18824, 26001, 36960, 25201, 38280, 30721, 63488, 47553, 41480, 55825, 90720, 51985, 57608, 77649, 129920, 70561, 101640, 81313
Offset: 1

Views

Author

R. J. Mathar, Jun 25 2018

Keywords

Crossrefs

Programs

  • Maple
    A316148 := proc(n)
        a := 1;
        for pe in ifactors(n)[2] do
            p := op(1,pe) ;
            e := op(2,pe) ;
            if p = 2 then
                a := a*p^(2*e+1)*(p^e-1) ;
            else
                a := a*p^(2*e-1)*(p^(e+1)+p^e-1) ;
            end if;
        end do:
        a ;
    end proc:
    seq(A316148(n),n=1..100) ;
  • Mathematica
    f[2, e_] :=  2^(2*e+1)*(2^e-1); f[p_, e_] := p^(3*e)+p^(3*e-1)-p^(2*e-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 11 2020 *)
  • PARI
    a(n) = {my(f = factor(n), p, e); prod(i = 1, #f~, p = f[i,1]; e = f[i,2]; if(p == 2, 2^(2*e+1)*(2^e-1), p^(3*e)+p^(3*e-1)-p^(2*e-1)));} \\ Amiram Eldar, Dec 18 2023

Formula

Multiplicative with a(2^e) = 2^(2e+1)*(2^e-1), a(p^e) = p^(3e)+p^(3e-1)-p^(2e-1) for odd primes p.
Sum_{k=1..n} a(k) ~ c * n^4 / 4, where c = zeta(2)/zeta(3) = 1.368432... (A306633). - Amiram Eldar, Dec 18 2023