cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316151 Heinz numbers of strict integer partitions of prime numbers into prime parts.

This page as a plain text file.
%I A316151 #6 Jun 25 2018 22:51:38
%S A316151 3,5,11,15,17,31,33,41,59,67,83,93,109,127,157,177,179,191,211,241,
%T A316151 277,283,327,331,353,367,401,431,461,509,537,547,563,587,599,617,709,
%U A316151 739,773,797,831,859,877,919,967,991,1031,1059,1063,1087,1153,1171,1201
%N A316151 Heinz numbers of strict integer partitions of prime numbers into prime parts.
%C A316151 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%e A316151 Sequence of strict integer partitions of prime numbers into prime parts, preceded by their Heinz numbers, begins:
%e A316151    3: (2)
%e A316151    5: (3)
%e A316151   11: (5)
%e A316151   15: (3,2)
%e A316151   17: (7)
%e A316151   31: (11)
%e A316151   33: (5,2)
%e A316151   41: (13)
%e A316151   59: (17)
%e A316151   67: (19)
%e A316151   83: (23)
%e A316151   93: (11,2)
%t A316151 primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A316151 Select[Range[100],And[SquareFreeQ[#],PrimeQ[Total[primeMS[#]]],And@@PrimeQ/@primeMS[#]]&]
%Y A316151 Cf. A000586, A000607, A038499, A056239, A056768, A064688, A070215, A085755, A302590, A316092.
%K A316151 nonn
%O A316151 1,1
%A A316151 _Gus Wiseman_, Jun 25 2018