This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A316151 #6 Jun 25 2018 22:51:38 %S A316151 3,5,11,15,17,31,33,41,59,67,83,93,109,127,157,177,179,191,211,241, %T A316151 277,283,327,331,353,367,401,431,461,509,537,547,563,587,599,617,709, %U A316151 739,773,797,831,859,877,919,967,991,1031,1059,1063,1087,1153,1171,1201 %N A316151 Heinz numbers of strict integer partitions of prime numbers into prime parts. %C A316151 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %e A316151 Sequence of strict integer partitions of prime numbers into prime parts, preceded by their Heinz numbers, begins: %e A316151 3: (2) %e A316151 5: (3) %e A316151 11: (5) %e A316151 15: (3,2) %e A316151 17: (7) %e A316151 31: (11) %e A316151 33: (5,2) %e A316151 41: (13) %e A316151 59: (17) %e A316151 67: (19) %e A316151 83: (23) %e A316151 93: (11,2) %t A316151 primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A316151 Select[Range[100],And[SquareFreeQ[#],PrimeQ[Total[primeMS[#]]],And@@PrimeQ/@primeMS[#]]&] %Y A316151 Cf. A000586, A000607, A038499, A056239, A056768, A064688, A070215, A085755, A302590, A316092. %K A316151 nonn %O A316151 1,1 %A A316151 _Gus Wiseman_, Jun 25 2018