This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A316153 #4 Jun 25 2018 22:51:44 %S A316153 15,33,45,93,153,177,275,327,369,405,425,537,603,605,775,831,891,1025, %T A316153 1059,1125,1413,1445,1475,1641,1705,1719,1761,2057,2075,2319,2511, %U A316153 2577,2979,3175,3179,3189,3459,3485,3603,3609,3825,3925,4299,4475,4497,4565,4581 %N A316153 Heinz numbers of integer partitions of prime numbers into a prime number of prime parts. %C A316153 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %e A316153 Sequence of integer partitions of prime numbers into a prime number of prime parts, preceded by their Heinz numbers, begins: %e A316153 15: (3,2) %e A316153 33: (5,2) %e A316153 45: (3,2,2) %e A316153 93: (11,2) %e A316153 153: (7,2,2) %e A316153 177: (17,2) %e A316153 275: (5,3,3) %e A316153 327: (29,2) %e A316153 369: (13,2,2) %e A316153 405: (3,2,2,2,2) %e A316153 425: (7,3,3) %e A316153 537: (41,2) %e A316153 603: (19,2,2) %e A316153 605: (5,5,3) %e A316153 775: (11,3,3) %e A316153 831: (59,2) %e A316153 891: (5,2,2,2,2) %t A316153 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A316153 Select[Range[1000],And[PrimeQ[PrimeOmega[#]],PrimeQ[Total[primeMS[#]]],And@@PrimeQ/@primeMS[#]]&] %Y A316153 Cf. A000586, A000607, A038499, A056239, A056768, A064688, A070215, A085755, A302590, A316092, A316151. %K A316153 nonn %O A316153 1,1 %A A316153 _Gus Wiseman_, Jun 25 2018