cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316156 The lexicographically earliest increasing sequence such that a(n) divides the sum of the first a(n)+1 terms.

This page as a plain text file.
%I A316156 #25 Dec 20 2021 02:37:37
%S A316156 1,2,3,6,7,8,9,13,15,17,18,19,20,31,32,39,40,43,55,59,63,64,65,66,67,
%T A316156 68,69,70,71,72,73,86,105,106,107,108,109,110,111,118,135,136,137,156,
%U A316156 157,158,159,160,161,162,163,164,165,166,167,184,185,186,187,195
%N A316156 The lexicographically earliest increasing sequence such that a(n) divides the sum of the first a(n)+1 terms.
%C A316156 Sequence b(n) of the sums of the first a(n)+1 terms of a(n) = Sum_{k=1..a(n)+1} a(k): 3, 6, 12, 36, 49, 64, 81, 169, 240, 323, 378, 437, 500, 1271, 1376, 2145, 2280, 2709, 4675, 5428, ... = A318872(1+a(n)).
%C A316156 Sequence c(n) of quotients when a(n) is calculated = (Sum_{k=1..a(n)+1} a(k) ) / a(n): 3, 3, 4, 6, 7, 8, 9, 13, 16, 19, 21, 23, 25, 41, 43, 55, 57, 63, 85, 92, ...
%C A316156 Is there a lexicographically earliest bijective sequence such that a(n) divides the sum of the first a(n)+1 terms?
%H A316156 Antti Karttunen, <a href="/A316156/b316156.txt">Table of n, a(n) for n = 1..20000</a>
%F A316156 a(1) = 1; for n > 1, if n-1 is not in the sequence, a(n) = a(n-1)+1, otherwise, a(n) is the least k > a(n-1) such that A318872(n-1)+k is a multiple of n-1. - _Antti Karttunen_, Sep 16 2018
%e A316156 a(1) = 1 because 1 divides the sum of the first 2 (i.e., a(1) + 1) terms (a(1) + a(2)) for whatever term a(2) > a(1).
%e A316156 a(2) = 2 because 2 is the smallest number > a(1) and 2 divides the sum of the first 3 (i.e., a(2) + 1) terms (a(1) + a(2) + a(3)) for whatever term a(3) > a(2) such that 2 divides the sum a(1) + a(2) + a(3); the smallest number > a(2) with this property for a(3) is 3.
%e A316156 a(3) = 3.
%e A316156 a(4) = 6 because 6 is the smallest number > a(3) such that term a(3) = 3 divides the sum of the first 4 (i.e., a(3) + 1) terms.
%e A316156 a(5) = 7 and a(6) = 8 because a(4) < a(5) < a(6) and 6 divides sum of the first 7 (i.e., a(4) + 1) terms (a(1) + a(2) + ... + a(7)) for whatever term a(7) > a(6) such that 6 divides the sum a(1) + a(2) + ... + a(7); the smallest number with this property for a(7) is 9.
%e A316156 a(7) = 9.
%o A316156 (PARI)
%o A316156 povisin(v,n) = { forstep(j=n,1,-1, if(v[j] == n, return(j))); (0); }; \\ Here: povisin = position_of_n_in_strictly_increasing_v
%o A316156 A316156list(up_to) = { my(v316156 = vector(up_to), v318872 = vector(up_to), k, s); v316156[1] = v318872[1] = 1; for(n=2, up_to, k = 1+v316156[n-1]; if(povisin(v316156, n-1), s = v318872[n-1]; while((s+k)%(n-1), k++)); v316156[n] = k; v318872[n] = v318872[n-1] + v316156[n]); (v316156); }; \\ _Antti Karttunen_, Sep 16 2018
%Y A316156 Cf. A019444, A244671, A316571.
%Y A316156 Cf. A318872 (partial sums), A318873 (first differences).
%K A316156 nonn
%O A316156 1,2
%A A316156 _Jaroslav Krizek_, Aug 20 2018