This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A316158 #9 Jun 29 2018 22:21:22 %S A316158 1,1,5,33,280,2883,34817,481477,7489454,129259662,2448516959, %T A316158 50460561330,1123192711285,26838555204646,684871918806173, %U A316158 18580595826856937,533846105922876855,16187892824592956798,516492582419620294678,17292646954057122160416,606075769032914504000388 %N A316158 Expansion of e.g.f. exp(exp(exp(x*exp(x)) - 1) - 1). %C A316158 Natural numbers exponentiated thrice. %H A316158 Alois P. Heinz, <a href="/A316158/b316158.txt">Table of n, a(n) for n = 0..423</a> %H A316158 M. Bernstein and N. J. A. Sloane, <a href="http://arXiv.org/abs/math.CO/0205301">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version] %H A316158 M. Bernstein and N. J. A. Sloane, <a href="/A003633/a003633_1.pdf">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures] %H A316158 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a> %p A316158 a:= (proc(p) local g; g:= proc(n) option remember; `if`(n=0, 1, %p A316158 p(n)+add(binomial(n-1, k-1)*p(k)*g(n-k), k=1..n-1)) %p A316158 end end@@3)(j-> j): %p A316158 seq(a(n), n=0..20); # _Alois P. Heinz_, Jun 25 2018 %t A316158 nmax = 20; CoefficientList[Series[Exp[Exp[Exp[x Exp[x]] - 1] - 1], {x, 0, nmax}], x] Range[0, nmax]! %t A316158 b[n_] := b[n] = Sum[k^(n - k) Binomial[n, k] BellB[k], {k, n}]; a[n_] := a[n] = Sum[b[k] Binomial[n - 1, k - 1] a[n - k], {k, n}]; a[0] = 1; Table[a[n], {n, 0, 20}] %Y A316158 Cf. A000248, A000258, A007550. %K A316158 nonn %O A316158 0,3 %A A316158 _Ilya Gutkovskiy_, Jun 25 2018