This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A316159 #6 Mar 27 2019 03:56:09 %S A316159 1,1,0,-4,-1,47,17,-1111,-12,43476,-49665,-2391805,7528897,168436465, %T A316159 -1052303380,-14234148280,161462347715,1288890088835,-27585406164839, %U A316159 -91839429007223,5125915000647712,-6443738757309888,-1013794188308572677,6728499674632962055,205866724424357904465 %N A316159 Expansion of e.g.f. exp(exp(x*exp(-x)) - 1). %H A316159 M. Bernstein and N. J. A. Sloane, <a href="http://arXiv.org/abs/math.CO/0205301">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version] %H A316159 M. Bernstein and N. J. A. Sloane, <a href="/A003633/a003633_1.pdf">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures] %H A316159 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a> %F A316159 a(n) = Sum_{k=0..n} (-k)^(n-k)*binomial(n,k)*Bell(k), where Bell() = A000110. %p A316159 a:=series(exp(exp(x*exp(-x))-1),x=0,25): seq(n!*coeff(a, x, n), n=0..24); # _Paolo P. Lava_, Mar 26 2019 %t A316159 nmax = 24; CoefficientList[Series[Exp[Exp[x Exp[-x]] - 1], {x, 0, nmax}], x] Range[0, nmax]! %t A316159 a[n_] := a[n] = Sum[(-k)^(n - k) Binomial[n, k] BellB[k], {k, n}]; a[0] = 1; Table[a[n], {n, 0, 24}] %Y A316159 Cf. A000110, A003725, A007550. %K A316159 sign %O A316159 0,4 %A A316159 _Ilya Gutkovskiy_, Jun 25 2018